
Unified Physics Simulation of Variable
Sized Particles Generated on Demand

Masterarbeit-Ausarbeitung von

Chao Jia

An der Fakultät für Informatik
Institut für Visualisierung und Datenanalyse,

Lehrstuhl für Computergrafik

September 16, 2017

Erstgutachter: Prof. Dr.-Ing. Carsten Dachsbacher
Zweitgutachter: Prof. Dr. Hartmut Prautzsch
Betreuender Mitarbeiter: Emanuel Schrade
Bearbeitungszeitraum: 17. März 2017– 16. September 2017

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gesellschaft www.kit.edu

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Related Work 3
2.1 Mass-Spring System . 3
2.2 Position Based Dynamics . 4
2.3 Fluid Simulation . 5
2.4 Unified Solver . 6
2.5 Voxelization . 7
2.6 Distance Transform (DT) . 8
2.7 Acceleration Structures . 9

2.7.1 Construction . 10
2.7.2 Traversal . 10

3 Position-Based Unified Particle Physics 12
3.1 Solver . 13

3.1.1 Time Integration . 13
3.1.2 The System to be Solved . 13
3.1.3 Iterative Methods . 15
3.1.4 Relaxation . 16
3.1.5 Stabilization . 18
3.1.6 The Simulation Loop . 19

3.2 Constraint Types . 19
3.2.1 Distance Constraint . 20
3.2.2 Contact Constraints . 21

3.2.2.1 Environment Collisions . 21
3.2.2.2 Particle Collisions . 22
3.2.2.3 Friction . 22

3.2.3 Density Constraint . 23

4 Rigid Bodies 25
4.1 Shape Matching . 25

4.1.1 Extraction of the Rotational Part . 26
4.1.1.1 Gram-Schmidt Orthogonalization 27
4.1.1.2 Polar Decomposition . 27
4.1.1.3 Yet Another Method . 27

4.1.2 An Example . 28
4.2 Collision Handling . 30

4.2.1 Mass Scaling . 31
4.3 Solid Voxelization . 32

4.3.1 The Edge Function . 32

ii

Contents iii

4.3.2 Overlap Test . 33
4.3.3 The Algorithm . 34

4.4 SDF Construction . 35
4.4.1 General Approach . 35

4.4.1.1 Two Dimensional Distance Transform 35
4.4.1.2 Extension to Three Dimensions 36

4.4.2 The Algorithm . 37
4.4.3 Voxel Merging . 38

5 Acceleration Structures 42
5.1 Uniform Hash Grid . 42

5.1.1 Two Construction Methods . 42
5.1.2 k-Nearest Neighbors Search . 43

5.2 BVH Construction on the GPU . 44
5.2.1 Morton Code . 44
5.2.2 Binary Radix Trees . 46
5.2.3 Construction of Binary Radix Trees 47
5.2.4 BVH Construction . 49

5.3 BVH Traversal on the GPU . 49
5.3.1 Traversal Using Stacks . 49
5.3.2 Stack-less Traversal . 50
5.3.3 Further Optimization . 52

6 Implementation and Results 54
6.1 Rigid Bodies . 54
6.2 Collision Detection . 56
6.3 Simulations . 58

7 Conclusion 61
7.1 Limitations . 61
7.2 Future Work . 62

Index 63

Bibliography 64

iii

1. Introduction

Animation of many visually interesting physical phenomena such as rigid bodies, de-
formable objects (e.g. rubber, flesh), shells (e.g. cloth, paper), rods (e.g. strands, hair),
gases, and liquids is of significant importance for movie special effects, commercials, com-
puter games and other interactive systems. It is very difficult to model these phenomena
by hand given the numerous degrees of freedom, and that the human visual system is
capable of easily spotting any physical irregularities caused by modeling errors.

Physics-based animation can help to relieve artists of innumerable tedious work and allow
them to concentrate on creative things such as characters, story and aesthetics. Simulated
physics is usually cheaper, safer and free of some limitations of directly capturing real
motion, e.g. “impossible” scenarios, fictional objects and exotic materials.

1.1 Motivation
Physical simulation has been well studied in computational science to reproduce the real-
world experiments, gain novel insights into physical systems and verify theoretical assump-
tions. To keep the simulation as accurate as possible, many methods have been developed
and some of them are successfully introduced into computer graphics.

Significant breakthroughs have been made in many key areas of physics-based simulation
of deformable objects such as object modeling, fracture, plasticity, cloth simulation, sta-
ble fluid simulation, time integration strategies, discretization and numerical solutions of
PDEs, multi-resolution modeling etc. Apart from the issue of instability, many of these
techniques are rather sophisticated, because the simulation of deformable objects is an
inter-discipline involving Newtonian dynamics, continuum mechanics, numerical compu-
tation, differential geometry, vector analysis, approximation theory and computer graphics
[Nealen et al., 2006]. Therefore, real-time performance can hardly be achieved.

Generally the interactivity, visual plausibility and controllability are the most important
factors for applications in real-time computer graphics, while the physical accuracy is of
secondary interest, and in some cases even irrelevant. To serve this purpose, position-based
approach has been proposed by Müller et al. [2007]. It is simple, unconditionally stable
and capable of creating plausible visual effects, therefore has gained popularity recently.

The programmable Graphics Processor Unit or GPU is specialized for compute-intensive,
highly parallel computation. Driven by the insatiable market demand, GPU has evolved

1

2 1. Introduction

into a highly parallel, multithreaded, manycore processor with strong floating-point capa-
bility and very high memory bandwidth [NVIDIA, 2017a].

By exploiting the tremendous computational horsepower of GPUs, Macklin et al. [2014]
presented a unified dynamic framework based on position-based dynamics (PBD) for real-
time visual effects, which can simulate scenes of tens of thousands particles connected by
constraints for different kinds of natural phenomena including gases, liquids, deformable
solids, rigid bodies and cloth with two-way interactions.

In this master project we based our work on the unified dynamic framework, and focused
on utilizing GPU to make further improvement and to remove some limitations of the
unified solver.

1.2 Structure
In Chapter 2, we give an overview of related work in position based dynamics and im-
portant background concepts.

In Chapter 3, we detail the formulation of the algorithms used in the simulation frame-
work, and some concrete constraints for common phenomena.

In Chapter 4, we focus on the algorithms related to rigid bodies, including the constraint
for restoring the shape, collision handling, and particle generation for rigid bodies.

In Chapter 5, we cover a few methods for accelerating the collision detection in our solver.

In Chapter 6, we describe our implementation and present the performance and visual
results of the implementation.

In Chapter 7, we conclude our work based on the results, along with a brief discussion
of the limitations of the methods we used in our project and areas for future work.

2

2. Related Work

2.1 Mass-Spring System
The mass-spring system is one of the most simple physically-based models, thus the most
likely to achieve real-time performance. In a mass-spring system, deformable bodies are
approximated by a set of masses linked by springs in a fixed topology. It is easy to
implement, highly parallelizable, and involves few computations [Desbrun et al., 1999].
A simple and intuitive integration scheme to animate the mass-spring system is the explicit
Euler method defined by

vn+1
i = vni + Fn

i

dt
m

xn+1
i = xni + vni dt

, (2.1)

where vi is the velocity of the mass point i of mass m at position xi, and Fi is the internal
force due to spring acting on it. Although the implementation of the explicit Euler method
is simple, the system can achieve stability only if the time step is very small, as being noted
by Desbrun et al. [1999]. Therefore they used the follwing implicit Euler integration

vn+1
i = vni + Fn+1

i

dt
m

xn+1
i = xni + vn+1

i dt
(2.2)

in their mass-spring system to simulate deformable objects. Fn+1 is computed using the
first order approximation

Fn+1 = Fn + ∂F
∂x ∆n+1x, (2.3)

where ∆n+1x = xn+1 − xn = (vn + ∆n+1v)dt.
The implicit scheme will not give rise to instabilities even for large time steps. However,
for very large time steps or high stiffness, the simulation behaves implausible. To eliminate
large stretch, they used a straightforward post-step modification of mass points, i.e. the
position of one point will be moved directly whenever the other of the two mass points is
constrained at a given position and the spring exceeds a predefined normalized threshold.
There are some significant drawbacks of the mass-spring method ([Bender et al., 2015]):

3

4 2. Related Work

• The behavior of the object depends on concrete setup of the spring network;
• The optimal parameters for the springs are difficult to be determined to prevent
severe penetration and meanwhile to guarantee the stability [Jakobsen, 2001];
• Volumetric effects such as volume conservation cannot be simulated directly by mass-
spring systems.

All of these problems can be solved by taking the entire volume of a solid into consideration.

2.2 Position Based Dynamics
Jakobsen [2001] proposed a simple, fast and stable method to simulate cloth for games
and interactive use, which works immediately on positions instead of first updating the
velocities and then the positions. He chose a velocity-less representation for the particle
system, which stores the current position xni and its previous position xn−1

i for each particle
i, instead of the position and velocity of each particle. To update the positions, he used
Verlet integration:

xn+1
i = 2xni − xn−1

i + Fn
i

m
dt2 (2.4)

Verlet integration is not always accurate and may lead to dissipation of the system, but it
is fast and stable, because the position is directly computed from the force, rather than via
the velocity. Collision and contact handling are resolved by projection, i.e. offending points
are directly projected out of the obstacle. Projection means the movement of an offending
point should be as little as possible, usually in the direction perpendicular to the collision
surface. Concurrent constraints are solved by relaxation, namely all local constraints are
consecutively solved in each of the solver iterations. The system will converge to a global
configuration in which all constraints are satisfied at the same time if the conditions are
physically consistent. He focused mainly on distance constraints, and only gave a simplified
example for rigid bodies without a systematic method.

Müller et al. [2005] introduced a geometrically motivated mesh-less deformation model
which significantly simplifies the preprocessing stage compared to modal analysis models
which commonly require the incorporation of additional auxiliary object representations.
In contrast to standard shape matching approaches which are primarily concerned with
establishing the correct correspondences between two shape representations, the problem
in their deformation model is to find least squares optimal rigid transformations between
the current state and the rest state of the object with the correspondences being a priori
known. The points are moved towards certain goal positions calculated from the optimal
transformations.

By integrating different kinds of constraints into a unified solver, Müller et al. [2007]
formulated the general position based approach, namely the Position-Based Dynamics
(PBD). They gave a general strategy for constraint projection, and proved it to be able
to preserve linear and angular momenta for internal constraints, which is an important
feature in animation because any error here would directly affect the motion in an awkward
way [Desbrun et al., 1999], i.e. ghost forces will be introduced which act like external
forces dragging and rotating the object. They implemented cloth simulation and two-way
interactions with rigid bodies using the Position-Based Dynamics framework.

Deul et al. [2016] extended position-based dynamics to rigid bodies. They introduced three
additional parameters for rigid bodies – orientation, angular velocity and inertia tensor
apart from translational motion parameters – position, velocity and mass. They used a
simple and intuitive concept of connectors [Witkin et al., 1990] to formulate constraints,

4

2.3. Fluid Simulation 5

so that generic constraints can be formulated without knowledge about the body itself
[Bender et al., 2015]. Similar to the PBD framework presented by Müller et al. [2007], col-
lision constraints are generated from scratch at each time step. The collision between two
rigid bodies is resolved by moving the bodies in opposite direction along the intersection
normal. Alternatively, shape matching constraints can be formulated for rigid bodies by
setting their stiffness to one [Müller et al., 2005].

2.3 Fluid Simulation

Fluid simulation is a common building block of a variety of natural phenomena such as
water, smoke, cloud and fire, and thus one of the most intriguing problems in computer
graphics.

In fluid dynamics it is common to assume real fluids such as water and air to be incom-
pressible and homogeneous. A fluid is incompressible if the volume of any subregion of
the fluid is constant over time. The density ρ of a homogeneous fluid is constant in space.
The state of fluids can be described by the incompressible Navier–Stokes equations:

∂u
∂t

= −(u · ∇)u− 1
ρ
∇p+ ν∇2u + F, (2.5)

∇ · u = 0, (2.6)

where u(x, t) is the velocity field, p(x, t) is the scalar pressure field, ν is the kinematic
viscosity, F(x, t) is the external forces that act on the fluid, and x is the spatial coordinates
[Harris, 2005].

One approach to numerically solve the Navier–Stokes equations is to discretize the region
through which the fluid flows into computational grid cells fixed in space throughout the
simulation, known as Eulerian scheme, which is suitable for simulating fluids using the
graphics pipeline, where the grid cells can be directly mapped to voxels of a 3D texture
[Crane et al., 2007]. However, Eulerian scheme can be very memory intensive to animate
arbitrary fluid motion. In contrast to Eulerian scheme, Lagrangian schemes discretize the
fluids into particles, and the particles move with the fluids during simulation.

It was believed that physically-based fluid simulation was too expensive for real-time
applications, because explicit integration schemes only allow very small time-steps. Stam
[1999] presented the first implicit integration scheme to solve the Navier-Stokes equations
for physically-based fluid simulation using Eulerian approach and achieved plausible visual
effect in real-time and stability for large time-steps. His method is not accurate enough
for engineering applications due to “numerical dissipation”, i.e. the flow tends to dampen
more rapidly than natural fluids, which, however, makes it easy to control in computer
graphical applications.

Müller et al. [2003] proposed a particle-based Lagrangian method based on Smoothed
Particles Hydrodynamics (SPH) [Lucy, 1977] to simulate fluids with free surfaces. SPH is
an interpolation method to approximate the value of a scalar field A at particle i positioned
at xi using its local neighborhood with radius h. According to SPH,

A(xi) =
∑
j

mj
A(xj)
ρj

W (rij , h) (2.7)

5

6 2. Related Work

Where mj is the mass of particle j, ρj is the density, rij = xi − xj and W (rij , h) is the
smoothing kernel with core radius h. To obtain a good approximation, the kernel must be
normalized such that

∫
W (x− x′, h)dx′ = 1, (2.8)

where dx′ is a differential volume element, or in the discrete form (Bodin et al. [2012])

∑
j

mj
1
ρj
W (rij , h) = 1. (2.9)

Derivatives of the field quantities appeared in fluid equations can be conveniently evaluated
using SPH since derivatives only affect the smoothing kernel. The gradient of A is

∇A(xi) =
∑
j

mj
Aj
ρj
∇W (rij , h) (2.10)

and the Laplacian of A is

∇A2(xi) =
∑
j

mj
Aj
ρj
∇2W (rij , h) (2.11)

The viscosity and pressure force fields are derived directly from the Navier-Stokes equation
using SPH and surface tension forces are modeled explicitly based on the ideas of Morris
[2000].

Instead of using Navier-Stokes equations, Bodin et al. [2012] formulated a many-body
constraint to maintain the constant mass density ρ0 for incompressible fluid simulation.
The density at each particle can be estimated using SPH. The constraint for particle i is

Ci(x1, . . . ,xn) = ρi
ρ0
− 1 = 1

ρ0

∑
j

mjW (rij , h)− 1 (2.12)

Compared to standard SPH, their constraint-based fluid is nearly incompressible and re-
sults in a much more stable and realistic simulation. By enforcing the density constraint
into PBD framework, Macklin and Müller [2013] proposed position-based fluids.

2.4 Unified Solver
As aforementioned, based on PBD, Macklin et al. [2014] presented a unified solver us-
ing particle-based representation. Contact and collisions are treated in a unified manner
through the use of particles connected by constraints as the fundamental building block,
thus the framework is flexible enough to model gases, liquids, deformable solids, rigid
bodies and cloth with two-way interactions.

They presented a novel friction constraint for their framework, which can effectively pre-
vent granular piles from quickly collapsing. Fluid-solid coupling is also implemented in
their unified solver elegantly by including solid particles in the fluid density estimation
and treating fluid particles as solid particles during collision resolution.

Rigid bodies are also represented using particles, therefore the mesh-less shape matching is
a more appropriate method for rigid body simulation. Particles for rigid bodies are created

6

2.5. Voxelization 7

by performing solid voxelization of a closed triangle mesh and placing particles at occupied
cells. Signed distance field (SDF) is used to determine the direction and magnitude of the
position corrections for rigid bodies during collision resolution. Generally solid voxelization
and exact construction of signed distance field are very compute-intensive, which makes
the initialization very slow for scenes containing large amounts of complex meshes with
many faces.

The unified dynamics framework imposes the restriction of fixed radius of the particles
in the same scene, so that the collision detection can be efficiently performed using a
uniform hash grid. However, under some circumstances this may lead to an inefficient
representation of the scene. For example, given a certain amount of water, the particles
for the water should not be too large, otherwise the simulation may be unrealistic, as has
been shown in the demo included in the release package of NVidia Flex library (Fig. 2.1).
However, it is usually sufficient to use a coarser representation for rigid bodies. Particles
inside a stiff object which strongly resists deformation can be much larger than those lying
on the surface.

(a) radius = 5 cm (b) radius = 10 cm (c) radius = 15 cm

Fig. 2.1: Three dam break scenes. The particles are created by sampling an 1m×2m×1m
box of water with different sampling rate at the initialization, resulting in particles
of different sizes for different scenes. All of these three screenshots are captured
at 80th frame. It is evident that lower sampling rate leads to an implausible fluid
simulation.

In this project we integrated the GPU implementations of voxelization and SDF con-
struction into the unified framework, which can largely reduce the time expense on the
initialization of scenes containing complex meshes, and avoid large amounts of data trans-
fer between the host and device. We also removed the requirement of fixed particle size
through the use of hierarchical acceleration structures.

2.5 Voxelization
For most applications, voxelization is a performance-critical part, thus several algorithms
have been proposed to voxelize triangle meshes using GPU rasterization pipeline in order
to increase parallelism.

Fang and Chen [2000] proposed a slice-wise surface voxelization, in which a 3D texture
object is split into multiple 2D slices using two shifted clip planes. The voxels are found
using OpenGL wireframe mode. They implemented the solid voxelization by rendering the
object from one direction and flipping the inside/outside state of all affected voxels. Instead
of slicing, depth peeling can be used to avoid voxelization of the “empty” space, thereby
improving the efficiency [Li et al., 2003]. By processing all slices in one pass, Eisemann
and Décoret [2008] achieved high performance in their solid voxelization method.

Due to the point sampling provided by conventional rasterization, all these above men-
tioned voxelization methods may easily miss thin structures and suffer from gaps. Schwarz

7

8 2. Related Work

and Seidel [2010] proposed data-parallel algorithms for both surface and solid voxelization
using GPU as a general massively parallel compute device instead of building on the
standard graphics pipeline. They also proposed a novel method to perform sparse solid
voxelization directly into a sparse hierarchical structure, which is more space-efficient.

2.6 Distance Transform (DT)
The distance transform, also known as distance field, is a useful construction in areas
of Computer Vision, Physics and Computer Graphics. The distance transform is closely
related to the Voronoi diagram, where the actual closest site to each point is of interest.
Formally,

Definition 2.6.1. A d-dimensional binary image is a function I from the elements of an
n1×n2×· · ·×nd array to {0, 1}. The total number of the elements is N = n1×n2×· · ·×nd.
The elements are called pixels when d = 2 and voxels when k ≥ 3. Voxels of value 0 and
1 are called background voxels and foreground or feature voxels (FVs), respectively. For
a given distance metric, the distance transform (DT) of an image I is an assignment to
each voxel x of the distance between x and the closest feature voxel (CFV) in I [Maurer
et al., 2003]. Feature voxels (FVs) are also termed sites by Cao et al. [2010].

Definition 2.6.2. the Voronoi diagram VS of a set of Voronoi sites S = {si} consists of
a set of disjoint Voronoi cells VS = {Csi}, i = 1, 2, . . . , NS . The Voronoi cell Csi is the
set of all points whose closest site is si together with the cell boundaries formed by points
equidistant from si and one or more other Voronoi sites. The Voronoi site si is also known
as the Voronoi center of Csi [Maurer et al., 2003].

Chamfer distance transform is a family of two-pass algorithms to compute distance trans-
form, in which the first pass propagates the distance information from left top to right
bottom, and the second pass propagates the distance information from right bottom to
left top of the image (Fig. 2.2) [Grevera, 2007].

Fig. 2.2: Chamfer distance transform at pixel 4 using a window of size 3× 3. In the first
pass, the distance information of left and top neighbors (pixel 0 – 3) are used to
update the distance information at pixel 4, and in the second pass, the right and
bottom neighbors (pixel 5 – 8) propagate their distance information to pixel 4.
The pixels involved in each pass roughly form a “chamfered edge”.

Rosenfeld and Pfaltz [1966] presented a method to perform chamfer distance transform
to an image, and created distance skeleton for the distance transform. Thereafter the
accuracy of the chamfer distance transform has been improved, and alternative algorithms
such as vector distance transform, fast marching method and level sets have been intro-
duced. Although earlier work concentrated mainly on two dimensional image processing,
three and higher dimensional distance transform has also been researched as the concept
of distance transform found their use in other areas such as correcting the topology of

8

2.7. Acceleration Structures 9

meshes, collision detection, modeling, manipulation and visualization of objects for Com-
puter Graphics [Jones et al., 2006].

A substantial amount of effort has been devoted to both approximate DT and exact DT.
Most approximate DT algorithms are based on vector propagation which stores a vector
pointed to the candidate site for each pixel or voxel in the image, and these vectors are
propagated according to a predefined pattern (vector template) [Danielsson, 1980].

The fast marching method (FMM) is a numerical algorithm for computing the arrival time
of a front propagating in the direction normal to itself by solving the Eikonal equation

‖∇T‖ = 1
F
, (2.13)

where F ≥ 0 is the speed of the front, and T is the arrival time of the front. It can be
used to approximate the distance transform if the speed of the front is set to 1. The time
complexity of FMM is O(N logN) [Jones et al., 2006].

Hoff III et al. [1999] presented an approach to compute Generalized Voronoi Diagrams
and the approximate distance transform in two and three dimensions using interpolation-
based polygon rasterization hardware. They rendered a three dimensional distance mesh
for each Voronoi site. The closest site and the distance to that site for each sample point are
computed using polygon scan-conversion and Z-buffer depth comparison. Their method
suffers from different kinds of errors:

• Meshing error caused by approximation of the distance functions using distance
mesh;
• Tessellation error due to approximating curved primitive using linear primitives;
• Resolution error introduced by coarse sampling of the cell grid by the raster;
• Hardware precision error due to fixed-precision arithmetic.

Maurer et al. [2003] presented a sequential algorithm of running time O(N) for exact DT of
binary images in arbitrary dimensions using dimensionality reduction and partial Voronoi
diagram construction. Specifically, the D-dimensional DT is computed by intersecting
the (D− 1)-dimensional Voronoi diagram whose sites are the feature voxels with the Dth
dimension of the image. The intersection can be performed using the (D− 1)-dimensional
DT.

Cao et al. [2010] proposed a work-efficient parallel algorithm of complexity O(N) to com-
pute the exact distance transform for 2D and higher dimensional images using GPU. They
partitioned the input image into bands to increase the parallelism, and used an efficient
merging to combine the sub-results. Their method outperforms all GPU-based approxi-
mate DT algorithm in 2D and 3D.

2.7 Acceleration Structures
For particles of uniform size, collision detection and neighbor finding can be accelerated
using a uniform gird which subdivide the simulation space into grid of uniformly sized
cells (usually the same as the size of particles, namely double the radius) [Green, 2008]. A
uniform hash grid can be efficiently implemented on the GPU and provide quick collision
detection by restricting tests to the particles inside 27 grid cells for each particle. Due to
limited memory, the size of the hash grid is typically not large enough to cover the whole
scene, thus the particles outside the hash grid will be mapped back into the grid during
collision test, also known as wrapping, which is usually realized by the modulo operation.

Typically there are two choices for the size of the grid cells when using a uniform hash
grid in a scene containing differently sized particles:

9

10 2. Related Work

(a) The size is chosen to be the same as the diameter of the largest particle. In this case,
the number of the grid cells to be tested is still 27 for each particle. However, the
number of the tests will increase drastically since the grid cells could be very large.
In the extreme, the complexity is roughly O(n2) if the size of the largest particle is
of the same order of magnitude as the hash grid;

(b) The size is chosen to be the same as the diameter of the smallest particle. In this case,
a larger particle i will be mapped into multiple cells, and each particle (partially)
mapped into any of these cells has to be tested for particle i. The test between two
large particles may be executed more than once due to this kind of “one-to-many”
mapping. Another issue is related to the limited size of the hash grid. For a particle
of comparable size to the hash grid, almost all the particles in the whole scene have
to be tested even if this large particle is outside the hash grid.

Therefore, a hierarchical acceleration structure is more suitable for scenes consisting of
particles of different sizes.

2.7.1 Construction

Most research on bounding volume hierarchy (BVH) construction focuses purely on serial
construction algorithms, which can hardly achieve real-time performance. A number of
methods has been proposed for constructing BVHs, octrees and k-d trees using general-
purpose GPU computing, some of which aim to maximize the quality of resulting trees
using surface area heuristic (SAH) [Danilewski et al., 2010], while others prefer rapid
construction to the tree quality [Garanzha et al., 2011; Lauterbach et al., 2009; Pantaleoni
and Luebke, 2010].

Lauterbach et al. [2009] presented a parallel algorithm for rapidly constructing BVH on
manycore GPUs using a linear ordering derived from spatial Morton codes, by means
of which the BVH construction problem is reduced to a simple sorting problem. The
hierarchy is generated in a top-down fashion.

Zhou et al. [2011] constructed octrees using Morton codes in the context of surface recon-
struction. They used a reverse level-order traversal of the octree to build the hierarchy,
i.e. the nodes in depth (D − 1) are determined using parallel compaction operations on
the nodes in depth D.

Karras [2012] presented a novel data-parallel algorithm for the construction of binary radix
trees from Morton codes, and efficient methods to build BVHs, octrees, and k-d trees using
binary radix trees. The parallel radix tree construction algorithm overcomes the sequential
bottlenecks in the construction of various spatial acceleration structures.

2.7.2 Traversal

BVH traversal is usually implemented via a stack, which is straightforward and efficient.
However, the memory and bandwidth requirement of maintaining a full stack could be
huge if the traversal is carried out in a highly parallel fashion. To minimize the use of
memory, many stack-less traversal algorithms have been proposed.

Hapala et al. [2011] presented an iterative traversal algorithm using a state machine to
infer the next node to be visited. One problem with this algorithm is that some inner
nodes are “accessed” twice, and that the traversal order heuristic (near/far child) may be
executed twice.

Barringer and Akenine-Möller [2013] proposed low-overhead stack-less traversal algorithms
for implicit binary trees and sparse trees. Their algorithms support dynamic descent
direction without restarting. Áfra and Szirmay-Kalos [2014] proposed a similar algorithm

10

2.7. Acceleration Structures 11

MBVH2 for binary BVH traversal which uses a bitstack in place of the descent level index
used by Barringer and Akenine-Möller [2013]. In contrast to the algorithms proposed by
Barringer and Akenine-Möller [2013], MBVH2 does not require the traversal to return to
the root node before termination, therefore is slightly more efficient.

11

3. Position-Based Unified Particle
Physics

Our work is based on the unified particle-based dynamics framework proposed by Macklin
et al. [2014], where particles are the fundamental building blocks for all object types. The
particle representation significantly reduces the collision types to be processed, simplifies
the algorithms for contact generation, and can be efficiently implemented by exploiting
the highly parallel processing capability of the GPU.

The core particle state consists of the following properties:
1 struct Particle
2 {
3 float x[3]; // position
4 float v[3]; // velocity
5 float w; // multiplicative inverse of the mass
6 float radius ;
7 int phase;
8 };

Since the restriction of fixed particle size per scene is removed in our project, it is necessary
to include the radius in the particle properties. The phase identifier is used to organize
particles into groups so that the interaction between particles such as disabling collisions
between particles of the same group can be conveniently controlled.

The particles are connected by constraints. Constraints are limitations imposed on the
geometrical or kinematic configuration of a mechanical system. A constraint is holonomic
if it imposes restrictions only on the geometrical configuration of the particles xi, and
imposes no restriction on their time variations ẋi, ẍi [DiBenedetto, 2010].

Typically only holonomic constraints are used in PBD. A bilateral constraint, i.e. an
equality constraint is defined by

C(x1,x2, . . . ,xN) = 0, (3.1)

and a unilateral constraint, namely an inequality constraint is defined by

C(x1,x2, . . . ,xN) ≥ 0, (3.2)

where {x1,x2, . . . ,xN} are the particle positions.

12

3.1. Solver 13

3.1 Solver
The equation of motion of a particle is governed by Newton’s second law:

v̇i = 1
mi

f i, (3.3)

where f i is the sum of forces acting on particle i, and the velocity vi is the rate of change
of the particle position xi:

ẋi = vi. (3.4)

The system to be simulated is second order in time, therefore both the positions and
velocities of the particles need to be initialized before entering the simulation loop.

3.1.1 Time Integration

The first step of the simulation loop is to predict the velocities and positions of the particles.
In the field of PBD the most popular integration scheme is the symplectic Euler method:

vn+1
i = vni + Fi

dt
mi

pn+1
i = xni + vn+1

i dt
. (3.5)

Symplectic Euler method is similar to Verlet integration(Eq. 2.4) in the sense that the
velocity of the last step vni is derived from the position change in the last step (Algorithm
3.3), although this is done implicitly in Verlet integration. However, more tuning options
for PBD are given by explicitly storing the velocity, such as particle sleeping described in
section 3.1.5.

In contrast to the explicit Euler method (Eq. 2.1), the velocity at (n + 1)th time step is
used for the prediction of the position vector pn+1

i .

3.1.2 The System to be Solved

After the prediction step described above, the positions of the particles should be adjusted
so that all the constraints are still satisfied. The goal of the PBD solver is to find the posi-
tion correction ∆xi for each particle i. For the following formula deduction and practical
calculation we mostly follow the work of Macklin et al. [2014] and Bender et al. [2015].

Given q constraints, the system to be solved is

C1(x + ∆x) � 0,
C2(x + ∆x) � 0,

...
Cq(x + ∆x) � 0,

(3.6)

where x = [xT1 , xT2 , . . . , xTN]T , ∆x = [∆xT1 , ∆xT2 , . . . , ∆xTN]T . The symbol � denotes
“=” if Ci is a bilateral constraint and “≥” if Ci is a unilateral constraint. The constraints
can be approximated using the linearization of C around x,

Ci(x + ∆x) ≈ Ci(x) +∇Ci(x)∆x. (3.7)

13

14 3. Position-Based Unified Particle Physics

Let M = diag(m1, . . . ,mN) be the mass matrix, and W = diag(w1, . . . , wN) be the inverse
of the mass matrix M. Linear and angular momentum conservation requires ∆x to be in
the direction of ∇Ci(x) and weighted by W, i.e.

∆x = W∇Ci(x)Tλi. (3.8)

where λi is the Lagrange multiplier. For bilateral constraints, λi can be calculated by
combining Eq. (3.7) and Eq. (3.8):

λi = − Ci(x)
∇Ci(x)W∇Ci(x)T (3.9)

After a given number of iterations, the change in velocity is computed according to the
total constraint delta

∆vi = ∆xi
∆t (3.10)

According to the Gauss principle of least constraints, the problem is equivalent to finding
the minimum change in kinematic energy that satisfies the constraints, which can be
formally stated as an optimization problem:

minimize 1
2∆vTM∆v (3.11)

subject to Ci(x + ∆x) � 0, i = 1, . . . , q (3.12)

According to Eq. (3.10), minimizing 1
2∆vTM∆v is equivalent to minimizing 1

2∆xTM∆x.
By applying the linearization in Eq. (3.7), and assuming all the constraints are bilateral,
the problem becomes

minimize 1
2∆xTM∆x (3.13)

subject to C(x) +∇C(x)∆x = 0, (3.14)

which is a quadratic programming problem. This problem can be solved by the method
of Lagrange multipliers [Rao, 2009]. The Lagrange function can be written as

L(∆x,λ) = 1
2∆xTM∆x + (∇C(x)∆x + C(x))Tλ, (3.15)

where λ = [λ1, λ2, . . . , λq]T is the vector of Lagrange multipliers. The optimum solutions
can be found by solving the following equations (necessary conditions):

∂L
∂∆x = M∆x +∇CT (x)λ = 0, (3.16)

∂L
∂λ

= ∇C(x)∆x + C(x) = 0. (3.17)

Eq. (3.8) and (3.9) can be immediately derived from the conditions (3.16) and (3.17).

14

3.1. Solver 15

3.1.3 Iterative Methods

From Eq. (3.16) we have

∆x = M−1∇CT (x)λ. (3.18)

Plugging Eq. (3.18) into Eq. (3.17) yields

Aλ = [∇C(x)M−1∇CT (x)]λ = −C(x). (3.19)

Instead of constructing A = ∇C(x)M−1∇CT (x) explicitly, and finding the exact solu-
tion to λ, which could be prohibitively memory intensive, PBD processes each constraint
separately by computing λ with Eq. (3.9) and updating x with Eq. (3.8) in each solver
iteration. Generally multiple iterations are needed for the convergence of the solution.

There is a group of iterative methods based on matrix splitting to solve linear system
iteratively [Allaire and Kaber, 2008]. Let A and P be nonsingular matrices, A = P−N
is a splitting of A. Given the initial solution x0, a splitting-based iterative method for
solving the linear system Ax = b is

xk+1 = P−1Nxk + P−1b, ∀k ≥ 1, (3.20)

where the matrix P−1N is called an iteration matrix or amplification matrix of the iterative
method.

Let matrix A = (ai,j)1≤i,j≤n, D = (di,j)1≤i,j≤n, E = (ei,j)1≤i,j≤n, F = (fi,j)1≤i,j≤n, where
D is the diagonal, −E is the lower part, and −F is the upper part of A. Namely,

di,j = ai,jδi,j ;
ei,j = −ai,j if i > j, and 0 otherwise;
fi,j = −ai,j if i < j, and 0 otherwise.

(3.21)

The Jacobi method is defined by the splitting P = D, N = D −A. The entries of xk+1

are computed from xk:

xk+1
i = 1

ai,i

[
−ai,1xk1 − · · · − ai,i−1x

k
i−1 − ai,i+1x

k
i+1 − · · · − ai,nxkn + bi

]
, (3.22)

The Gauss-Seidel method is defined by the splitting P = D−E, N = F. The computation
of xk+1

i also uses the first (i− 1) entries of xk+1 which is already available:

xk+1
i = 1

ai,i

[
−ai,1xk+1

1 − · · · − ai,i−1x
k+1
i−1 − ai,i+1x

k
i+1 − · · · − ai,nxkn + bi

]
. (3.23)

In PBD, Gauss-Seidel iteration updates the positions immediately after each constraint
is processed. The Gauss-Seidel method is a linear relaxation method with slow global
convergence. However, it is stable, easy to implement, and able to damp out jitter and
instabilities [Bodin et al., 2012]. Despite the slow convergence, significant errors can be
effectively reduced by the Gauss-Seidel method in the first few iterations [Bender et al.,
2015].

15

16 3. Position-Based Unified Particle Physics

Projected Gauss-Seidel (Algorithm 3.1) is used in the presence of unilateral constraints
which turn the linear system into a linear complementarity problem (LCP). The constraint
is in effect skipped if Ci(x) ≥ 0 through the use of the projection operator “max” in Line
4 of Algorithm 3.1, hence the name “projected” [Lu, 2016].

Algorithm 3.1 Projected Gauss-Seidel
1: k ← 0 . set the iteration counter k to 0
2: repeat
3: for i = 1, 2, . . . , q do

4: λi ← max
(

0, − Ci(x)
∇Ci(x)M−1∇Ci(x)T

)
. Eq. (3.9)

5: ∆x←M−1∇Ci(x)Tλi . Eq. (3.8)
6: x← x + ∆x
7: end for
8: k ← k + 1
9: until k = kmax . kmax: maximum number of iterations

Gauss-Seidel iteration is sequential due to Line 6 of Algorithm 3.1, which cannot be very
efficiently implemented on the GPU. Projected Jacobi (Algorithm 3.2) can be used to
increase parallelism, because the positions of the particles remain unchanged during each
Jacobi iteration.

Algorithm 3.2 Projected Jacobi
1: k ← 0 . set the iteration counter k to 0
2: ∆x← 0
3: repeat
4: for i = 1, 2, . . . , q do

5: λi ← max
(

0, − Ci(x)
∇Ci(x)M−1∇Ci(x)T

)
. Eq. (3.9)

6: ∆x← ∆x + M−1∇Ci(x)Tλi . Eq. (3.8)
7: end for
8: x← x + ∆x
9: k ← k + 1

10: until k = kmax . kmax: maximum number of iterations

3.1.4 Relaxation

Fig. 3.1: A one dimensional particle i of mass mi is constrained to lie at x = 0 by two
identical distance constraints. At the beginning of one time step, the particle
locates at position x′i, which is away from its rest pose, thus both of the two
constraints are violated.

Under some circumstances the constraints are ill-conditioned, which makes it impossible
to solve the system using the Jacobi method. The problem can be explained with the
example (Fig. 3.1) given by Macklin et al. [2014].

16

3.1. Solver 17

The constraint equations are:

C1(x) = xi = 0,
C2(x) = xi = 0.

(3.24)

At the beginning of the first iteration, the Lagrange multiplier is λ1 = − x′
i

mi
, and ∆x = −x′i.

Because the Gauss-Seidel method will update x after the first constraint is processed, i.e.
the particle is moved by −x′i, thereby back to the origin, λ2 for constraint C2(x) becomes
0, and no further position correction for particle i is needed.

However, with Jacobi method, λ2 = λ1 = − x′
i

mi
for the first iteration, as the position

x = x′i is the same for both constraints. After the first iteration, particle i will be moved
to x = −x′i, thereby neither of the constraints is satisfied. Similarly, during the next
iteration particle i will be projected back to the position x = x′i. In fact, the particle will
oscillate all the time, and the correct solution will never be reached by Jacobi iterations.

Fig. 3.2: The position of the particle j is constrained by three walls. At time step n,
after the prediction step (subsection 3.1.1), the particle locates at the position
x0
j represented by the light blue circle. Although one Gauss-Seidel iteration will

move the particle to the correct position xgoalj represented by the dotted circle,
where all three constraints are satisfied and no more iteration is needed, the first
Jacobi iteration will project the particle to the position x1

j represented by the
orange circle, where constraint C3 is violated. Therefore Jacobi method needs
another iteration to fulfill all of these three constraints.

Similar constraints can result in very slow convergence, as illustrated in Fig. 3.2. The
problem could be much more severe for the Jacobi method due to the slow local propagation
of the error if the three walls in Fig. 3.2 are replaced by a pile of particles.

Macklin et al. [2014] applied under-relaxation based on constraint averaging [Bridson et al.,
2002] to address the oscillation and slow convergence problem with the Jacobi method.
Specifically, Line 8 of Algorithm 3.2 (projected Jacobi method) is replaced by

x← x + κ ◦∆x, (3.25)

where κ = [1
n1
, 1
n2
, . . . , 1

nN
]T is a vector of the multiplicative inverse of the number of

constraints affecting each particle. The momentum may not be preserved when ni 6= nj
for two neighboring particles i and j which are connected by one collision constraint, but
the visual artifacts are typically negligible.

In cases when the averaging in Eq. (3.25) is too aggressive, which leads to slow convergence,
Macklin et al. [2014] introduced a user-tunable parameter ω to control the rate of successive

17

18 3. Position-Based Unified Particle Physics

over-relaxation (SOR). The formula for position update becomes

x← x + ωκ ◦∆x. (3.26)

Under most circumstances 1 ≤ ω ≤ 2. ω < 1 corresponds to the under-relaxation, which
is typically unnecessary since the under-relaxation provided by the constraint averaging
is sufficient for most cases to avoid divergence, as being noted by Macklin et al. [2014];
ω > 2 could be used for some scenes when necessary, however, higher values may cancel
out the effect of the constraint averaging and result in an unstable system.

3.1.5 Stabilization
A common paradigm to achieve the best approximation of the exact solution using an
iterative method is to break the iteration loop only when the error is smaller than a
user-defined threshold or the maximum execution time is exceeded. In contrast, the PBD
solver only runs a given number of iterations for each time step to achieve real-time
performance. One problem with this approach is that some constraints may not be fulfilled
at the beginning of the next time step, resulting in undesirable effect, such as unnatural
movement (Fig. 3.3) and positional drifting.

Fig. 3.3: An example given by Macklin et al. [2014]. At the beginning of t = 0, part of
the particle with velocity 0 is trapped under the ground due to early break of the
iteration loop. PBD projects it to the surface and updates its velocity accordingly
at end of this time step. Due to the resulting velocity the particle seems to be
shot out of the ground and continues to move upwards in the subsequent time
steps.

Macklin et al. [2014] introduced a pre-stabilization pass to address this issue. After the
prediction step (subsection 3.1.1) and the generation of the contact constraints, the pre-
stabilization pass solves the contact constraints with the positions before prediction. That
is, both the original positions xn and the predicted positions pn+1 will be corrected by the
pre-stabilization. Usually one or two iterations of pre-stabilization on contact constraints
such as collision and friction is sufficient to avoid most visual artifacts.
Positional drifting can be solved by particle sleeping at the end of each time step, which
freezes particles in place if their velocity becomes smaller than a user-defined threshold ε
[Macklin et al., 2014]:

xn+1
i =

pn+1
i ,

∣∣∣pn+1
i − xni

∣∣∣ > ε,

xni , otherwise.
(3.27)

We note that the velocity vi shall not be affected by particle sleeping, otherwise the
behavior of the system becomes unrealistic. For example, rigid bodies may balance in a
non-physical pose.

18

3.2. Constraint Types 19

3.1.6 The Simulation Loop

Summing up the methods presented in the previous subsections leads to Algorithm 3.3 for
the simulation loop [Macklin et al., 2014]:

Algorithm 3.3 Simulation Loop
1: for all particles i do
2: vi ← vi + Fext(xi)∆t
3: pi ← xi + vi∆t
4: mi ← mie

−kh(pi) . mass scaling for the fast convergence of stacks of rigid bodies
5: end for
6: for all particles i do
7: find neighboring particles Ni(pi)
8: generate solid contacts constraints
9: end for

10: iter ← 0
11: while iter < kstabilize do . kstabilize: maximum iterations of pre-stabilization
12: ∆x← 0, n← 0
13: solve contact constraints for ∆x, n
14: x← x + κ ◦∆x . Eq. (3.25)
15: p← x + κ ◦∆x
16: end while
17: iter ← 0
18: while iter < ksolver do . ksolver: maximum number of solver iterations
19: ∆x← 0, n← 0
20: solve contact constraints for ∆x, n
21: p← p + κ ◦∆x
22: restore mass mi

23: for each constraint group G do
24: ∆x← 0, n← 0
25: solve all constraints in G for ∆x, n
26: p← p + κ ◦∆x
27: end for
28: end while
29: for all particles i do
30: vi ← 1

∆t(pi − xi)
31: xi ← pi or apply particle sleeping
32: end for

The mass scaling in Line 4 of Algorithm 3.3 is a parallel-friendly method to improve the
stability of rigid stacks, which will be explained in the next chapter. The constraint groups
(Line 23 of Algorithm 3.3) are built based on the types of the constraints which will be
detailed in the next section.

3.2 Constraint Types

Different types of constraints can be incorporated into the PBD framework, making it
capable of simulating a variety of natural objects such as rigid bodies, deformable bodies,
cloth, granular materials and fluids. In the following we will introduce some specific
constraints.

19

20 3. Position-Based Unified Particle Physics

3.2.1 Distance Constraint

Distance constraint is one of the most simple yet non-linear constraints [Bender et al.,
2015]. One distance constraint restricts the distance between two particles to be constant.
Formally,

C(x1,x2) = |x21| − d = |x1 − x2| − d = 0, (3.28)

Where x21 = x1 − x2.

Fig. 3.4: Distance constraint C(x1,x2) = |x21| − d. The corrections ∆xi are weighted by
the multiplicative inverse of the particle mass wi = 1

mi
.

The derivative with respect to x1 is

∇x1C(x1,x2) = n = x21
|x21|

, (3.29)

and the derivative with respect to x2 is

∇x2C(x1,x2) = −n = − x21
|x21|

. (3.30)

According to Eq. (3.9), the Lagrange multiplier for distance constraint is computed to be

λ = −|x21| − d
w1 + w2

. (3.31)

The position corrections can be calculated with Eq. (3.8):

∆x1 = − w1
w1 + w2

(|x21| − d) n,

∆x2 = + w2
w1 + w2

(|x21| − d) n,
(3.32)

which are exactly the same as the formula proposed by Jakobsen [2001], meaning that
the distance constraints and the corresponding correction formula introduced by Jakobsen
[2001] can be treated as a special case of the general constraint projection.

20

3.2. Constraint Types 21

3.2.2 Contact Constraints

Generally two kinds of constraints are generated when two objects come into contact with
each other – the collision constraint along the contact normal, and the friction constraint
perpendicular to the contact normal.

Collisions are handled by first finding every pair of objects collide with each other and
then generating one collision constraint for each pair. Objects which are close enough
to each other could also be included, because contact and neighbor finding are only ex-
ecuted once at the beginning of each time step, and reused by all the solver iterations
and pre-stabilization iterations at that time step (Algorithm 3.3). In each iteration only
the collision constraints being violated are processed. Collision constraints between two
objects may be formulated differently depending on the type of the objects.

To simulate friction, Müller et al. [2007] used damping forces which is vulnerable to other
positional constraints, thus static friction can not be modeled [Bender et al., 2015]. Macklin
et al. [2014] proposed a novel friction model which could be incorporated into the PBD
framework as a part of positional constraints.

3.2.2.1 Environment Collisions

Although in the particle-based unified solver, most of the objects are represented as parti-
cles, it is more suitable to use a non-particle representation for some objects. For example,
walls and grounds can be modeled as infinite planes and static shapes can be represented
by triangle meshes.

An infinite plane could be described by an equation of the form n • x + d = 0, with the
unit vector n being the normal the plane, and d being the distance from the origin to the
plane. The constraint for the collision between particle i and the plane n • x + d = 0 can
be formulated as follows:

C(xi) = n • xi + d− drest ≥ 0, (3.33)

where drest is the minimum distance from the particle to the plane. In this constraint only
one particle xi is involved, and the derivative with respect to this particle is

∇xiC(xi) = n, (3.34)

thus the Lagrange multiplier

λ = −n • xi + d− drest
wi

. (3.35)

and the position correction

∆xi = −(n • xi + d− drest)n. (3.36)

Collision between particles and shapes represented by triangle meshes can be handled by
first finding a set of candidate contact triangles, and then each contact triangle can be
treated as an infinite plane.

21

22 3. Position-Based Unified Particle Physics

3.2.2.2 Particle Collisions

Linear constraints can also be generated for collisions between free particles by first intro-
ducing a contact plane and then treating the contact plane as an infinite plane [Bender
et al., 2015]. Free particles refer to those particles which are not bounded by a shape
matching constraint, namely they do not belong to any rigid body. A more robust method
is to maintain the non-linear constraint

C(x1,x2) = |x21| − (r1 + r2) = |x1 − x2| − (r1 + r2) ≥ 0, (3.37)

Where x21 = x1 − x2, r1 and r2 are the radii of particle 1 and particle 2, respectively.
The Lagrange multiplier can be calculated in a similar manner to the distance constraint
described in Section 3.2.1. This constraint can be used to simulate granular-like materials
[Macklin et al., 2014]. Collision between particles of rigid bodies will be discussed in the
next chapter.

3.2.2.3 Friction

After the inter-penetration between two particles being resolved, Macklin et al. [2014]
applied frictional position corrections based on the tangential relative displacement to
both particles. The relative displacement

∆x⊥ =
[
(pj − xj)− (pi − xi)

]
⊥ n, (3.38)

where pi and pj are the prediction positions (Algorithm 3.3) which include all the position
corrections applied to these two particles, xi and xj are the original particle positions at
the beginning of the current time step, n = pj−pi

|pj−pi| is the contact normal, and ⊥ is a
projection operator. The scalar factor equivalent to the Lagrange multiplier

λ = − 1
wi + wj

|∆x⊥|, |∆x⊥| < µsd

|∆x⊥| ·min
(

µkd

|∆x⊥|
, 1
)
, otherwise

(3.39)

where d is the penetration depth, 0 ≤ µs, µk ≤ 1 are the coefficients of static and kinematic
friction, respectively. The position corrections

∆xi = +wiλ
∆x⊥
|∆x⊥|

,

∆xj = −wjλ
∆x⊥
|∆x⊥|

.

(3.40)

The friction model is applicable for all kinds of objects. In cases when one of the two
colliding objects is a static object such as ground, its mass is set to infinity (i.e. zero
weight). By doing so the total position correction will be applied to the movable object.
The contact normal is calculated based on the shape of the two colliding objects.

22

3.2. Constraint Types 23

3.2.3 Density Constraint

As aforementioned, Macklin and Müller [2013] proposed position-based fluids (PBF) based
on the density constraint

Ci(x1, . . . ,xn) = ρi
ρ0
− 1 = 1

ρ0

∑
j∈M(xi)

mjW (xi − xj , h)− 1 = 0, (3.41)

where M(xi) = Ni(xi) ∪ {i}, and Ni(xi) is a set of local neighbors of particle i inside
radius h of the SPH kernel. Apart from being normalized, the SPH kernel should also be
even [Müller et al., 2003], i.e. W (xi− xj , h) = W (xj − xi, h), thereby ∇xiW (xi−xi, h) is
undefined, thus ∇xiCi is calculated indirectly from its neighbors by taking advantage of
the following symmetries

j ∈ Ni(xi)⇐⇒ i ∈ Nj(xj), (3.42)
W (xi − xj , h) = W (xj − xi, h) =⇒ ∇xiW (xi − xj , h) = −∇xiW (xj − xi, h). (3.43)

The gradient of the constraint function in Eq. (3.41) with respect to particle k is given by

∇xk
Ci = 1

ρ0

mk

∑
j∈Ni(xi)

∇xk
W (xi − xj , h) if k = i

−mk∇xk
W (xi − xk, h) otherwise

(3.44)

The Lagrange multiplier

λi = − Ci(x1, . . . ,xn)∑
k∈M(xi)

wk|∇xk
Ci|2

. (3.45)

To avoid the instability caused by the infinitesimal denominator of Eq. (3.45) due to
the vanishing gradient at the smoothing kernel boundary, Macklin and Müller [2013] in-
troduced a relaxation parameter ε into the formula (3.44). The Lagrange multiplier is
now

λi = − Ci(x1, . . . ,xn)
ε+

∑
k∈M(xi)

wk|∇xk
Ci|2

. (3.46)

The position correction for particle i can be calculated as follows:

∆xi = 1
ρ0

−wi ·mi

∑
j∈Ni(xi)

∇xiW (xj − xi, h)λj

 +

wi ·mi · λi
∑

j∈Ni(xi)
∇xiW (xi − xj , h)

= 1
ρ0

∑
j∈M(xi)

(λi + λj)∇xiW (xi − xj , h)

(3.47)

23

24 3. Position-Based Unified Particle Physics

Macklin and Müller [2013] also introduced an artificial pressure to address particle clus-
tering problem caused by negative pressures when a particle has only a few neighbors and
the rest density is unable to be reached, similar to the approach proposed by Monaghan
[2000].

The corrective pressure is specified in terms of the smoothing kernel:

scorr = −k
(
W (xi − xj , h)
W (∆q, h)

)n
, (3.48)

where ∆q is a fixed point inside the smoothing kernel radius, k and n are positive constants.
After applying the corrective term, the position correction becomes

∆xi = 1
ρ0

∑
j∈M(xi)

(λi + λj + scorr)∇xiW (xi − xj , h) (3.49)

To simulate two-way fluid solid coupling, we follow the approach proposed by Macklin
et al. [2014]. When a fluid particle collides with a solid particle, both particles are treated
as solid particles, and constraints are generated and processed as described in Section
3.2.2. Conversely, the solid particles also contribute to the fluid density estimation

ρi =
∑

j∈Mf (xi)
mjW (xi − xj , h) +

∑
j∈Ms(xi)

sjmjW (xi − xj , h), (3.50)

where Mf (xi) is a set of fluid particle neighbors including particle i, Ms(xi) is a set of
solid particle neighbors, sj is a per-particle scaling factor depending on the sampling rate
of the solid particles and the configuration of the solid bodies.

Because each particle with radius r represents the substance inside a cube with edge length
2r, the mass of the particle is calculated as follows:

mi = ρi · V = ρi · (2ri)3, (3.51)

where ρi is the density specified for particle i at the initialization, and ri is the radius of
particle i.

In our project, the solid particles also participate in the estimation of the gradient of the
density constraint.

24

4. Rigid Bodies

The shape matching method proposed by Müller et al. [2005] is a mesh-less approach
intended to simulate visually plausible elastic and plastic deformations. However, by
setting the stiffness to one, a deformable object becomes intolerant of deformations of any
degree, thus turns in effect to a rigid body. The shape matching constraint can be easily
incorporated into the PBD framework, and it is very suitable for the particle representation
of rigid bodies.

The collision between particles with the same phase-identifier (i.e. they belong to the same
shape, cf. Line 7 of the particle structure at the beginning of Chapter 3) will be resolved
implicitly, thus additional contact constraints are no longer necessary for them.

4.1 Shape Matching
After the prediction step (Section 3.1.1), the relative positions of the particles inside one
body might be changed drastically, which could no longer represent the original shape of
the body. The objective is to find an appropriate goal position for each particle inside the
body so that the geometric shape of the body is retained and meanwhile the movement,
i.e. the rotation and translation of the body is plausible.

The optimal rotation and translation for the body are found by shape matching. Formally,
the shape matching problem in the particle-based solver can be stated as follows:

Definition 4.1.1. Given two sets of particles X̄ = {x̄1, . . . , x̄n} and X = {x1, . . . ,xn}
and their correspondences

x̄i ←→ xi, ∀i ∈ {1, . . . , n}, (4.1)

The goal of the shape matching is to find the rotation matrix R and the translational
vectors c̄ and c which minimize

f(R, c̄, c) =
n∑
i=1

wi (R(x̄i − c̄)− (xi − c))2 , (4.2)

where wi is the weight of particle i (not to be confused with the multiplicative inverse of
mass, which is represented by wi). one natural choice for the weights is the physical mass
mi.

25

26 4. Rigid Bodies

The optimal translation vectors are given by

c̄ =

n∑
i=1

wix̄i
n∑
i=1

wi

, c =

n∑
i=1

wixi
n∑
i=1

wi

. (4.3)

If wi = mi, c̄ and c are the centers of mass of the initial shape X̄ and the current shape
X respectively. Let

q̄i = x̄i − c̄, qi = xi − c, ∀i ∈ {1, . . . , n}, (4.4)

be the relative positions of the initial shape X̄ and the current shape X , and relax the
problem of finding the optimal rotation R to finding the optimal linear transformation A,
the term to be minimized in Eq. (4.2) becomes

f(A) =
n∑
i=1

wi (Aq̄i − qi)
2 . (4.5)

Setting the derivative of f(A) with respect to each element in A to zero yields the optimal
linear transformation

A =
(

n∑
i=1

wiqiq̄Ti

)
︸ ︷︷ ︸

Aqq̄

(
n∑
i=1

wiq̄iq̄Ti

)−1

︸ ︷︷ ︸
Aq̄q̄

= Aqq̄Aq̄q̄. (4.6)

Aq̄q̄ is a symmetric matrix which contains no rotation, thus the optimal rotation R can
be extract from the covariance matrix Aqq̄ of the body X . The goal position

gi = R(x̄i − c̄) + c, ∀i ∈ {1, . . . , n}, (4.7)

and the position correction for body X is given by

∆xi = α(gi − xi), ∀i ∈ {1, . . . , n}, (4.8)

where α is a user-specified stiffness to restrain the deformation of the body X . For rigid
bodies, α = 1.

4.1.1 Extraction of the Rotational Part

The problem of extracting the rotational part R from matrix A can be formally defined
as follows [Müller et al., 2016]:

Definition 4.1.2. Given an arbitrary 3× 3 matrix A, find an orthonormal 3× 3 matrix
R with det(R) = 1 which minimizes the Frobenius-norm [Björck, 2015]

F (R) = ‖A−R‖ =

√√√√ 3∑
i=1

3∑
j=1
|aij − rij |2. (4.9)

26

4.1. Shape Matching 27

4.1.1.1 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is one of the simplest methods to extract the rotational
part R from matrix A [Müller et al., 2016]. Let R = [r1, r2, r3], and A = [a1,a2,a3],
where ri and ai are the ith columns of matrix R and A, respectively, then R can be
constructed as follows:

r̃1 = a1, r1 = r̃1
‖r̃1‖

,

r̃2 = a2 −
r̃1 • a2
r̃1 • r̃1

r̃1, r2 = r̃2
‖r̃2‖

,

r̃3 = r1 × r2, r3 = r̃3
‖r̃3‖

.

(4.10)

As noted by Müller et al. [2016], the result depends on the order in which the columns of
A are processed, thereby introducing a bias which causes “ghost forces”.

4.1.1.2 Polar Decomposition

Perhaps polar decomposition is the most popular approach in computer graphics, based
on which Müller et al. [2005] extracted the rotational part R from the covariance matrix
A of a body. The polar decomposition of A is defined by

A = R
√

ATA︸ ︷︷ ︸
symmetric

. (4.11)

Let B = ATA and S =
√

B, the rotational part

R = A
(√

ATA
)−1

= A
(√

B
)−1

= AS−1. (4.12)

To compute S, a diagonal matrix D will be found such that B = VDV−1, where V is a
matrix with the three eigenvectors of B as columns. Then

S = V
√

DV−1. (4.13)

The correctness can be immediately verified by the fact that

S2 = (V
√

DV−1)2 = V
√

D(V−1V)
√

DV−1 = VDV−1 = B. (4.14)

The diagonal matrix D and the eigenvectors of B can be found by a few iterations of
Jacobi rotations. Since S is a 3× 3 matrix, the inverse of S can be easily found.

4.1.1.3 Yet Another Method

Müller et al. [2016] introduced a novel method which is much simpler and more effective.
Instead of directly solving for the optimal orthonormal matrix R, they solved the problem
through the use of an update rule

R ←− exp(ω)R, (4.15)

27

28 4. Rigid Bodies

with R̃ being an initial approximation which is already available, and the term exp(ω) is
an exponential map, i.e. a rotation matrix with axis ω

|ω|
and angle |ω|.

For simulations, a reasonable choice for the initial approximation R̃ could be the solution
of the last time step. The ideal choice for the direction of ω is the one about which the
Frobenius-norm F (R̃) decreases the most.

Let R̃ = [r̃1, r̃2, r̃3], and A = [a1,a2,a3], where r̃i and ai are the ith columns of matrix R̃
and A, respectively. Let

UF = 1
2F

2(R̃) = 1
2

3∑
i=1

(r̃i − ai)2 (4.16)

be the potential acting on the rigid body represented by the rotation R̃, which produces
the forces acting at the tips of the axes of R̃

f i = −∂UF
∂r̃i

= ai − r̃i, i ∈ {1, 2, 3} (4.17)

The total torque acting on R̃ due to these forces is

τ =
3∑
i=1

r̃i × (ai − r̃i) =
3∑
i=1

r̃i × ai. (4.18)

To minimize the Frobenius-norm, the direction of ω should be the same as τ . Let φ be
the angle between the vectors r̃i and ai. After being rotated by ω, ri and ai should be
aligned to make τ = 0, which can be achieved by

ω = r̃i × ai
r̃i • ai

=⇒ |ω| = |r̃i||ai| sinφ
|r̃i||ai| cosφ = tanφ ≈ φ. (4.19)

Therefore, given the initial approximation R = R̃, the final iterative formula is given by

R ←− exp

3∑
i=1

ri × ai∣∣∣∣ 3∑
i=1

ri • ai
∣∣∣∣+ ε

R, (4.20)

where ε is a very small positive constant. The absolute operator in the denominator is
used to prevent the flip of the torque direction.

Despite the simple form, this method is very efficient for simulations where the rotation
in the last step is already available, and can robustly handle a rank deficient matrix A.

4.1.2 An Example

The concept of shape matching will be clarified through a simple two-dimensional example
in Fig. 4.1, where the rigid body X = {x0,x1,x2,x3} consists of four particles.

It is to be noted that Fig. 4.1 is not just an schematic representation of the idea of shape
matching; instead, the positions of the particles are exactly calculated using the shape
matching algorithm, with the z-axis being the rotation axis.

In Fig. 4.1,

28

4.1. Shape Matching 29

Fig. 4.1: A two-dimensional shape matching example

(a) At the beginning of the simulation, the rigid body X is falling towards the ground
with high velocity;

(b) After the prediction step, X comes into penetrating contact with the ground;
(c) During contact handling of the first solver iteration, particle 0 of X is projected onto

the ground;
(d) After shape matching being applied to X , the shape is restored; the new configuration

of X can be seen as a rotated and translated version of the configuration right after
the prediction step (Fig. 4.1 b), which mitigates the inter-penetration. The dotted
circles indicate the configuration before shape matching (Fig. 4.1 c);

(e) A second iteration is necessary since the penetration has not been completely re-
solved by last iteration. After contact handling of the second iteration, particle 0 is
projected onto the ground again;

(f) The shape matching restores the shape of X , but particle 0 is still slightly penetrating
the ground, thus additional iterations remain necessary.

One problem with the shape matching algorithm is the inherent under-relaxation due to
the minimum mean squared error (MMSE) estimator for the optimal linear transformation
(Eq. 4.5 and Eq. 4.6). For example, in Fig. 4.1 d), particle 0 is projected under the ground
by the shape matching constraint.

Indeed, to minimize the term in Eq. (4.5), the positions of the four particles have to be
adjusted accordingly. However, the weight is too small for particle 0 to prevent the error
caused by the other three particles from being distributed to it, which leads to another
penetration and eventually slow convergence.

One natural thought is to adjust the weights of the rigid body particles for shape matching
based on the position correction during the process of the contact constraints. Specifi-
cally, larger displacement corresponds to heavier weight, which makes it harder for non-
penetrating particles to cancel out the corrections by contact handling.

Fig. 4.2: Shape matching with adaptive weighting

In Fig. 4.2 c), the weight of particle 0 is increased to 32 (an experimentally determined

29

30 4. Rigid Bodies

value) during the handling of the shape matching constraint, while the weights for the
other three particles remains to be 1. With only one solver iteration, the shape is restored,
meanwhile the penetration is almost completely resolved (Fig. 4.2 d). In fact, particle
0 is barely moved by the shape matching constraint. The convergence could be largely
accelerated for large shapes consisting of a huge amount of particles.

Compared to the fixed weighting in Fig. 4.1, the adaptive weighting in Fig. 4.2 moves
the rotation center closer to particle 0, resulting in a more realistic visual effect when
the friction between the rigid body and other objects is strong. However, overweighted
particles might cause implausible rotations when the friction is supposed to be very weak.
Therefore, instead of blindly changing the weights in the simulation of complex scenes, a
more apposite method which takes all kinds of conditions into consideration remains to
be found.

Another problem with the shape matching algorithm arises when dealing with deformable
objects. Deformable objects exhibit higher stiffness as the number of the solver itera-
tions increases, because the particles are pulled closer to their goal positions by the shape
matching constraint in each iteration. This problem can be solved either by solving dif-
ferent types of constraints with different frequencies instead of a global frequency for all
constraints, as suggested by Macklin et al. [2014], or by applying the shape matching con-
straint only when the difference between the current position and the goal position of a
particle exceeds some threshold derived from the stiffness parameter α.

Besides, the degree of the deformation decreases with smaller time steps as less penetration
can be tolerated by the system. Müller et al. [2005] solved this problem by setting α = h/τ ,
where h is the time step size and τ is a time constant.

4.2 Collision Handling
The method introduced in Section 3.2.2.2 for solving the collision between two free particles
such as granular-like materials cannot stop two rigid bodies from being interlocked once
tunneling occurs (Fig. 4.3).

Fig. 4.3: An example given by Macklin et al. [2014]. In this example, one rigid body
penetrates another rigid body due to high velocity. Both particle 1 and particle
2 will not be projected out of the other shape if the collision is handled in the
same way as two free particles, which only takes local collisions between single
particles into consideration. In fact, the sum of the position corrections due to
the four neighbors is 0, thus causes interlock.

To resolve this problem, Macklin et al. [2014] used signed distance field (SDF) to determine
the direction and magnitude of the position corrections. the signed distance at the points
inside the rigid body are defined as negative values, and outside the rigid body as positive
values. Therefore, the gradients point outside the rigid body. The magnitude of the SDF
for each particle is the distance from the center of the particle to the surface of the rigid
body.

30

4.2. Collision Handling 31

By sampling the SDF magnitude ϕ and the SDF gradient ∇ϕ onto each particle belonging
to a rigid shape, Macklin et al. [2014] are able to generate the contact constraints be-
tween particles of different shapes in the same way as free particles, and to process these
constraints similarly:

∆xi = − wi
wi + wj

(d · nij),

∆xj = + wj
wi + wj

(d · nij),
(4.21)

where d = min(|ϕi|, |ϕj |), and

nij =
{
∇ϕi if |ϕi| < |ϕj |,
−∇ϕj otherwise.

(4.22)

However, due to the strong under-relaxation introduced by the shape matching constraints
(Section 4.1.2), we note that letting d = max(|ϕi|, |ϕj |) leads to a faster convergence. The
gradient is still chosen according to Eq. (4.22). In cases when ∇ϕ is undefined for some
particles inside a shape, an arbitrary unit vector is used.

The under-sampling of the SDF near the surface of a shape leads to discontinuous pen-
etration depth and jitter. To address this issue, Macklin et al. [2014] modified the con-
tact normal when one of two colliding particles lies on the boundary of a shape (i.e.
|ϕ| < boundary particle radius) as follows:

n∗ij =
{

xij − 2(xij • nij)nij if xij • nij < 0,
xij otherwise,

(4.23)

and d = ri + rj − |xi − xj |, where xij = − xi − xj
|xi − xj |

.

When only one particle i of two colliding particles belongs to a rigid body and the other
one j is a free particle, we use d = |ϕi| and the contact normal

nij = − xi − xj
|xi − xj |

. (4.24)

If i is a boundary particle, the modified contact normal is calculated according to Eq.
(4.23), and d = ri + rj − |xi − xj |.

4.2.1 Mass Scaling

Large piles of rigid bodies converge very slow when iterative methods are used because
the local propagation of the position corrections by contact constraints is very slow (e.g.
one particle per iteration for Jacobi method), thus many iterations are needed to stop the
oscillation of the rigid piles, making them visually plausible.

Noticing that heavier particles are more resistant to the projection by collision constraints,
Macklin et al. [2014] modified the mass of the particles temporarily (Line 4 of Algorithm
3.3) such that particles with low potential energy are heavier than the particles with high

31

32 4. Rigid Bodies

potential energy to achieve faster convergence. The scaling factor are determined by the
following equation:

si(xi) = e−kh(xi), (4.25)

where k can be considered as the speed of error propagation. h(xi) is the height function
which is inversely proportional to the potential energy. When the piles are maintained
by the gravity, which is almost always the case, the height (i.e. the y-coordinate) of the
particle i can be used. The modified mass is given by m∗i = simi. After the contact
handling, the mass are restored (Line 22 of Algorithm 3.3).

This method can also effectively prevent granular piles from fast collapsing due to the
additional kinematic energy introduced by the slow local propagation of the position cor-
rections by contact constraints.

4.3 Solid Voxelization
To generate particles from a triangle mesh, the first step is to perform a solid voxelization
of the triangle mesh. To exploit the huge computational capacity of the GPU, we imple-
mented the triangle-parallel solid voxelization algorithm proposed by Schwarz and Seidel
[2010].

One basic operation of their algorithm is to test the overlap between the projection of each
triangle face and the projection of the center of each voxel on one coordinate plane (i.e.
xy-plane, yz-plane or zx-plane), for which they utilized the edge function.

4.3.1 The Edge Function

The edge function is a linear function to classify points on a two dimensional plane divided
by a line into three regions: the points to the left of the line, the points to the right of the
line, and the points on the line [Pineda, 1988].

Fig. 4.4: edge function

In Fig. 4.4, the line L is defined as

xa + d · e = xa + d · [ex, ey]T = xa + d · (xb − xa), −∞ < d <∞, (4.26)

where a and b are two arbitrary points on the line L, and ray R is the positive part (i.e.
d > 0) of line L. The left side of the line is the region swept by ray R when rotating ray
R counterclockwise about its initial point a by π radians, and the right side of the line is

32

4.3. Solid Voxelization 33

the region swept by ray R when rotating ray R clockwise about its initial point a by π
radians.

Vector n = [−ey, ex]T is normal to edge e. Vector p = xp − xa, where p is an arbitrary
point on the xy-plane. The edge function of line L is defined by

fL(xp) = p • n = xp • n− xa • n. (4.27)

Let α be the angle between p and n, an interesting property of the edge function is

fL(xp)

> 0 if p lies on the left side of line L, i.e. |α| < π

2
= 0 if p lies on the line L, i.e. |α| = π

2
< 0 if p lies on the right side of line L, i.e. |α| > π

2

(4.28)

4.3.2 Overlap Test
Let4v0v1v2 be the projection of a triangle face4x0x1x2 with face normal n = [nx,ny,nz]T
on the yz-plane, as illustrated in Fig. 4.5. The edges of 4v0v1v2 are defined by

ei = v(i+1) mod 3 − vi = [eyi , e
z
i]T , i ∈ {0, 1, 2}, (4.29)

and the normal for each edge is defined by

nei = [nyei
,nzei

] = [−ezi , e
y
i]
T ·
{

1, nx ≥ 0
−1, nx < 0

}
, i ∈ {0, 1, 2}, (4.30)

which ensures that all of these normals always point to the inside of the triangle 4v0v1v2,
regardless of the orientation of the triangle face 4x0x1x2.

Fig. 4.5: The projection of a mesh triangle on the yz-plane.

Let dei = −vi •nei for each edge ei, and p = [py,pz]T be the projection of the center of a
voxel q on the yz-plane, the overlap test for triangle face 4x0x1x2 and voxel center q is
defined by

f4x0x1x2(p) =
∧

(p • nei + dei ≥ 0) , ∀i ∈ {0, 1, 2}. (4.31)

f4x0x1x2(p) = true indicates an overlap.

33

34 4. Rigid Bodies

4.3.3 The Algorithm

The first step of voxelizing a mesh is to uniformly scale and translate the mesh so that
it fits exactly into an nx × ny × nz volume of voxels defined by the two corner points
bmin = [0, 0, 0]T and bmax = [nx, ny, nz]T , where each voxel is represented by one bit
and initialized with 0 meaning that the voxel is not occupied by the mesh. By doing so
the numerical error caused by the limited precision of the floating point number can be
avoided. The edge length of each voxel is exactly 1, which simplifies the calculation to
some extent.

Then each triangle face is projected on the yz-plane, and the AABB will be calculated,
from which the yz range of the covered voxels can be derived.

If the range is non-empty, the projection of the center p(j,k) of each contained voxel column
(j, k) on the yz-plane will be tested against the projection of the triangle face on the yz-
plane using the function in Eq. (4.31).

Each p(j,k) which passes the overlap test (i.e. the function returns true) will be projected
along the x-axis to the point p(j,k),4 on the triangle’s plane. Let

nx =
⌊
px(j,k),4 + 1

2

⌋
− 1, (4.32)

where px(j,k),4 is the x-coordinate of the point p(j,k),4, then for each voxel (i, j, k), where
0 ≤ i ≤ nx, the corresponding bit will be flipped. The flip operation is performed by the
atomic xor function. For a voxel occupied by the mesh, the number of the flip operation
is odd, thus the final value of the corresponding bit is 1. It is to be noted that for a
meaningful voxelization using this algorithm, the mesh has to be closed.

One problem with the overlap test f4x0x1x2(p) in Eq. (4.31) is that if an edge or a vertex
shared by two triangle faces overlaps the same voxel center q, both tests will return true,
which leads to an incorrect conclusion about the voxel. To avoid this problem, Schwarz
and Seidel [2010] only took the top edges (nyei > 0) and the right edges (nyei = 0∧nzei

< 0)
into consideration. Concretely, they defined the term

fei =

ε, nyei
> 0

∨(
nyei

= 0
∧

nzei
< 0

)
0, otherwise

 , i ∈ {0, 1, 2}, (4.33)

where ε is the machine epsilon for the chosen floating point type, and incorporated it into
Eq. (4.31). The modified overlap test

f∗4x0x1x2(p) =
∧

((p • nei + dei) + fei > 0) , ∀i ∈ {0, 1, 2}. (4.34)

The parallelism is realized by assigning each triangle to one CUDA thread. To potentially
increase the parallelism, we choose the projection plane adaptively. Specifically, let d =
[dx,dy,dz]T be the dimensions of the AABB of the mesh to be voxelized, then the ij-plane
will be chosen as the projection plane such that the area of the projection of the AABB
will be maximized, namely

ij = arg max
ij

(di · dj), ij ∈ {xy, yz, zx}. (4.35)

34

4.4. SDF Construction 35

When the zx-plane is chosen, the first coordinate of the projection vk of the vertex k at
xk is the z-coordinate of xk, i.e. vk = [xzk,xxk]T .

Schwarz and Seidel [2010] also proposed a tile-based solid voxelization algorithm to miti-
gate the potential under-utilization caused by the triangle-level parallelism. However, the
3D models in this project are generally not very complicated. In fact, the most compli-
cated one we used – the Stanford dragon model contains no more than 48k triangles. The
dimension of the volume is usually less than 1283 and the voxelization is only performed
once during initialization, therefore we believe that tile-based optimization is unnecessary
and might be less efficient than the triangle-parallel algorithm [Schwarz and Seidel, 2010].

Their sparse solid voxelization which performs the voxelization directly into a sparse hierar-
chical structure is very space-efficient and seems very decent for the purpose of generating
particles of different sizes. Unfortunately the resulting data structure does not directly fit
into the algorithm we used for the construction of the SDF, and this kind of voxelization
may lead to severe under-sampling near the boundary of the mesh. Therefore, instead of
using the sparse voxelization method, we generate differently sized particles by merging
voxels based on the magnitude of their signed distances.

4.4 SDF Construction
The SDF of an n1 × n2 × n3 volume of voxels is constructed through distance transform,
for which we implemented a simplified version of the parallel banding algorithm proposed
by Cao et al. [2010], namely a row- or column-parallel algorithm without partitioning the
volume into small bands and then merging the results, as the dimensions of the volume
are generally small (less than 1283).

4.4.1 General Approach

The fundamental idea for the general approach for exact distance transform is traced back
to Kolountzakis and Kutulakos [1992], and further extended by Hayashi et al. [1998], Lee
et al. [2003], Maurer et al. [2003] and Cao et al. [2010]. Here we mainly follow the notation
and formulation proposed by Cao et al. [2010], start with the two dimensional case, and
then extend the same idea to three dimensions.

Before more detailed description we would like to precisely define some terms heavily used
in the following discussion:

Definition 4.4.1. Row j of a 2D image consists of all the pixels with the same y-coordinate
j; column i of a 2D image consists of all the pixels with the same x-coordinate i; row (j, k)
of a 3D volume consists of all the voxels with the same y-coordinate j and z-coordinate
k; column (i, k) of a 3D volume consists of all the voxels with the same x-coordinate i
and z-coordinate k; aisle (i, j) of a 3D volume consists of all the voxels with the same
x-coordinate i and the same y-coordinate j; slice k of a 3D volume consists of all the
voxels with the same z-coordinate k.

4.4.1.1 Two Dimensional Distance Transform

Given a 2D binary image of size N = n1 × n2, a site s is termed a 2D proximate site
of column i if the Voronoi region of s intersects the pixels in column i. Let s1D

i,j be
the closest site to the pixel (i, j) in row j (s1D

i,j = null if there is no site in row j),
S2D
i = {s1D

i,j : s1D
i,j 6= null, 0 ≤ j ≤ n2 − 1} be the collection of such closest sites for all

pixels in column i, P2D
i be the set of the proximate sites of column i, and the site with

smaller coordinate be the closest site in cases when a pixel is equidistant from two sites,
then the following three propositions hold (cf. Fig. 4.6):

35

36 4. Rigid Bodies

Fig. 4.6: Given four sites a, b, b′, and c, the perpendicular bisector of segment ab in-
tersects column i at p, and the perpendicular bisector of segment bc intersects
column i at q.

Proposition 4.4.2. Let b at (i1, j) and b′ at (i2, j) be two sites in the same row j. The
Voronoi region of b′ cannot intersect column i if |i1 − i| < |i2 − i|.

Proposition 4.4.3. Let a at (i1, j1), b at (i2, j2) and c at (i3, j3) be three sites with
j1 < j2 < j3. Assuming that the perpendicular bisector of segment ab intersects column i
at p(i, u), and the perpendicular bisector of segment bc intersects column i at q(i, v), then
the Voronoi region of b cannot intersect column i if u > v, therefore b /∈ P2D

i . In this
case, it is said that a and c dominate b.

Proposition 4.4.4. Let q′(i, v) and p′(i, u) be two pixels in column i such that u > v, a
at (i1, j1) and c at (i3, j3) be the closest sites to q′ and p′ respectively, then j1 ≤ j3.

Proposition 4.4.2 indicates that there is no more than one site along a row that can
potentially be a proximate site of column i. Namely, P2D

i ⊆ S2D
i , thus

∣∣∣P2D
i

∣∣∣ ≤ n2.

Proposition 4.4.4 implies that the Voronoi regions of the proximate sites of column i appear
in exactly the same order as when sorting the approximate sites by their y-coordinates.

With these three propositions, the exact distance transform for a 2D image can be per-
formed as follows:

(1) For each pixel (i, j), compute s1D
i,j (1D Voronoi diagram per row);

(2) Compute the set P2D
i for each column i using S2D

i ;
(3) For each pixel (i, j), compute the closest site using P2D

i .

4.4.1.2 Extension to Three Dimensions

Given a volume of size N = n1 × n2 × n3, a site s is termed a 3D proximate site of
aisle (i, j) if the Voronoi region of s intersects the voxels in aisle (i, j). Let s2D

i,j,k be the
closest site to the voxel (i, j, k) on slice k (s2D

i,j,k = null if there is no site on slice k),
S3D
i,j = {s2D

i,j,k : s2D
i,j,k 6= null, 0 ≤ k ≤ n3 − 1} be the collection of such closest sites for all

voxels in aisle (i, j), P3D
i,j be the set of the proximate sites of aisle (i, j), and the site with

smaller coordinate be the closest site in cases when a voxel is equidistant from two sites,
then all of these three propositions above still hold if each “row” of a 2D image is replaced
by each “slice” of a 3D volume, and each “column” of the 2D image is replaced by each
“aisle” of the volume. Precisely,

Proposition 4.4.5. Let b at (i1, j1, k) and b′ at (i2, j2, k) be two sites in the same slice k.
The Voronoi region of b′ cannot intersect aisle (i, j) if ‖(i1 − i, j1 − j)‖ < ‖(i2 − i, j2 − j)‖.

36

4.4. SDF Construction 37

Proposition 4.4.6. Let a at (i1, j1, k1), b at (i2, j2, k2) and c at (i3, j3, k3) be three sites
with k1 < k2 < k3. Assuming that the perpendicular bisecting plane of segment ab inter-
sects aisle (i, j) at p(i, j, u), and the perpendicular bisecting plane of segment bc intersects
aisle (i, j) at q(i, j, v), then the Voronoi region of b cannot intersect aisle (i, j) if u > v,
therefore b /∈ P3D

i,j . In this case, it is said that a and c dominate b.

Proposition 4.4.7. Let q′(i, j, v) and p′(i, j, u) be two voxels in aisle (i, j) such that u > v,
a at (i1, j1, k1) and c at (i3, j3, k3) be the closest sites to q′ and p′ respectively, then k1 ≤ k3.

Given all the propositions above, the exact distance transform for a 3D volume can be
done in the following five steps:

(1) For each voxel (i, j, k) on each slice k, compute s1D
i,j,k (1D Voronoi diagram per row);

(2) Compute the set P2D
i,k for each column (i, k) on each slice k using S2D

i,k ;
(3) For each voxel (i, j, k), compute s2D

i,j,k using P2D
i,k (2D Voronoi diagram for each slice);

(4) Compute the set P3D
i,j for each aisle (i, j) of the volume using S3D

i,j ;
(5) For each voxel (i, j, k), compute the closest site using P3D

i,j .

4.4.2 The Algorithm

To compute the distance transform of a volume of size N = n1 × n2 × n3, an array of the
same size is allocated, with each element at (i, j, k) being a 3D vector where the index of
the closest site to voxel p(i, j, k) will be stored.

Let Nc(p(i, j, k)) = {q(i + di, j + dj , k + dk) : |q| 6= |p|, −1 ≤ di, dj , dk ≤ 1} be the set
of neighbors of voxel p(i, j, k) whose bits are different from p. During the initialization
(Algorithm 4.1), the sites (i.e. the voxels at the boundary of the mesh) will be found, and
the magnitude of the SDF at a site p(i, j, k) is determined during the initialization, which
is half of the distance between the center of p and the center of the closest voxel q ∈ Nc(p)
whose bit is different from p. During the calculation of the SDF, each voxel is assumed
to be a unit cube, and will be scaled according to the actual size of the mesh during the
generation of particles.

Algorithm 4.1 Distance Transform Step 0: Initialization
1: for each voxel p(i, j, k) do
2: if Nc(p) = ∅ then
3: si,j,k ← (−∞,−∞,−∞) . set the initial closest site to an impossible value
4: |φp| ← ∞ . |φp| is the magnitude of the SDF at p(i, j, k)
5: else
6: si,j,k ← (i, j, k) . p is a site
7: (iq, jq, kq)← arg miniq ,jq ,kq

‖(i, j, k)− (iq, jq, kq)‖, ∀q(iq, jq, kq) ∈ Nc(p)
8: |φp| ← 1

2‖(i, j, k)− (iq, jq, kq)‖
9: end if

10: end for

In step 1, for each voxel p(i, j, k), the closest site s1D
i,j,k in the same row (j, k) will be

determined, which is equivalent to constructing the Voronoi diagram of all the sites in row
(j, k) with only the voxels in the same row being considered (cf. definition 2.6.2). We
use a two-pass sweeping to find the closest site to each voxel p(i, j, k) of each row (j, k)
[Schneider et al., 2009]. In the first pass, the information of the closest site is propagated
from left to right, and in the second pass from right to left (Algorithm 4.2).

For step 2, we use the sequential implementation proposed by Cao et al. [2010] for each
column (i, k). To determine P2D

i,k , all the sites s1D
i,j,k in S2D

i,k are scanned in a bottom-up

37

38 4. Rigid Bodies

Algorithm 4.2 Distance Transform Step 1: Voronoi Diagram in 1D
1: for each row (j, k) do
2: scurr ← (−∞,−∞,−∞)
3: for i = 0, 1, . . . , n1 − 1 do
4: if ‖scurr − (i, j, k)‖ < ‖si,j,k − (i, j, k)‖ then
5: si,j,k ← scurr
6: else
7: scurr ← si,j,k
8: end if
9: end for

10:
11: scurr ← (−∞,−∞,−∞)
12: for i = n1 − 1, n1 − 2, . . . , 1, 0 do
13: if ‖scurr − (i, j, k)‖ < ‖si,j,k − (i, j, k)‖ then
14: si,j,k ← scurr
15: else
16: scurr ← si,j,k
17: end if
18: end for
19: end for

fashion, from j = 0 to j = n2 − 1, and meanwhile a stack of sites which are potentially
proximate sites is maintained. When a new site c1D

i,j,k in S2D
i,k is reached, the top of the

stack b1D
i,j,k will be repeatedly popped out until it is no longer dominated by c1D

i,j,k and the
second top of the stack a1D

i,j,k (cf. proposition 4.4.3). Then c1D
i,j,k is pushed into the stack.

It is to be noted that the stack grows upwards, with the index of the bottom being 0. At
the end of the process, the stack contains P2D

i,k (algorithm 4.3).

At the beginning of step 3, for each column (i, k), an index Ii,k is set to 0. Starting
from j = 0, for each voxel p(i, j, k), Ii,k will be repeatedly increased by one as long as
the distance between the voxel p and the site at Ii,k of the stack P2D

i,k is larger than the
distance between the voxel p and the site at Ii,k + 1. When the loop terminates, the site
at Ii,k is the closest site to voxel p on slice k due to proposition 4.4.4. Then the next voxel
p′(i, j + 1, k) is processed (Algorithm 4.4).

Step 4 (Algorithm 4.5) and step 5 (Algorithm 4.6) are proceeded in a similar way to step
2 and step 3, respectively.

After the closest site for each voxel is determined, the magnitude of the SDF at voxel
p(i, j, k) can be calculated as the distance between the center of p and the center of the
closest site si,j,k plus the magnitude of the SDF at site si,j,k (Algorithm 4.7). The signed
distance is negative for a voxel p occupied by the mesh, and positive otherwise. The
gradient of the SDF at each voxel is calculated from the signed distance of its six direct
neighbors. To ensure the accuracy at the boundary of the mesh, we extend the size of the
volume by one in each direction (±x, ±y, and ±z).

4.4.3 Voxel Merging

To generate particles of different sizes and meanwhile keep a fine-grained sampling near
the boundary of the mesh, we take an approach similar to the calculation of mipmaps, yet
the voxels near the boundary of the mesh will not be merged.

Let V l(i, j, k) be the voxel of volume V l at (i, j, k) with signed distance φl(i, j, k) and
∣∣∣V l
∣∣∣

38

4.4. SDF Construction 39

Algorithm 4.3 Distance Transform Step 2: Proximate Sites in 2D
1: for each column (i, k) do
2: Ti,k ← −1 . index of the top of stack Pi,k
3: for j = 0, 1, . . . , n2 − 1 do
4: c← si,j,k
5: while Ti,k > 0 do
6: b← Pi,k[Ti,k]
7: a← Pi,k[Ti,k − 1]
8: if a and c dominate b then
9: Ti,k ← Ti,k − 1

10: pop b out of Pi,k
11: else
12: break
13: end if
14: end while
15: push c to Pi,k
16: Ti,k ← Ti,k + 1
17: end for
18: end for

be the number of voxels in V l whose bits are 1, where l is the mipmap level with V 0 = V ,
then the size of V l+1

N l+1 = nl+1
1 × nl+1

2 × nl+1
3 =

⌊
nl1
2

⌋
×
⌊
nl2
2

⌋
×
⌊
nl3
2

⌋
(4.36)

Let S li,j,k = {V l−1(2i+ di, 2j + dj , 2k + dk) : 0 ≤ di, dj , dk ≤ 1} be the set of the 8 voxels
covered by voxel V l(i, j, k). During merging its bit will be set to 1 if the signed distances
of all the 8 voxels are smaller than a user-specified threshold φb. Let V l−1(x, y, z) be the
voxel with the largest signed distance in S li,j,k, then the signed distance at voxel V l(i, j, k)
after the merge

φl(i, j, k) = φl−1(x, y, z)−
√

3 · 2l−2, (4.37)

where
√

3 ·2l−2 is the distance between the center of voxel V l(i, j, k) and the center of voxel
V l−1(x, y, z). The gradient of the SDF ∇φl(i, j, k) will be the same as voxel V l−1(x, y, z)
(Algorithm 4.8). The merging process can be completely disabled by setting φb to −∞.

Finally, particles are placed at the occupied voxels. The radii and actual positions of the
particles are derived from the initial position of the mesh, the scale of the mesh and the
sizes of the voxels.

39

40 4. Rigid Bodies

Algorithm 4.4 Distance Transform Step 3: Voronoi Diagram in 2D
1: for each column (i, k) do
2: Ii,k ← 0
3: for j = 0, 1, . . . , n2 − 1 do
4: while Ii,k < Ti,k do . Ti,k is the index of the top of stack Pi,k
5: if ‖(i, j, k)− Pi,k[Ii,k]‖ ≤ ‖(i, j, k)− Pi,k[Ii,k + 1]‖ then
6: si,j,k ← Pi,k[Ii,k]
7: break
8: else
9: Ii,k ← Ii,k + 1

10: end if
11: end while
12: if Ii,k = Ti,k then
13: si,j,k ← Pi,k[Ii,k]
14: end if
15: end for
16: end for

Algorithm 4.5 Distance Transform Step 4: Proximate Sites in 3D
1: for each aisle (i, j) do
2: Ti,j ← −1 . index of the top of stack Pi,j
3: for k = 0, 1, . . . , n3 − 1 do
4: c← si,j,k
5: while Ti,j > 0 do
6: b← Pi,j [Ti,j]
7: a← Pi,j [Ti,j − 1]
8: if a and c dominate b then
9: Ti,j ← Ti,j − 1

10: pop b out of Pi,j
11: else
12: break
13: end if
14: end while
15: push c to Pi,j
16: Ti,j ← Ti,j + 1
17: end for
18: end for

40

4.4. SDF Construction 41

Algorithm 4.6 Distance Transform Step 5: Voronoi Diagram in 3D
1: for each aisle (i, j) do
2: Ii,j ← 0
3: for k = 0, 1, . . . , n3 − 1 do
4: while Ii,j < Ti,j do . Ti,j is the index of the top of stack Pi,j
5: if ‖(i, j, k)− Pi,j [Ii,j]‖ ≤ ‖(i, j, k)− Pi,j [Ii,j + 1]‖ then
6: si,j,k ← Pi,j [Ii,j]
7: break
8: else
9: Ii,j ← Ii,j + 1

10: end if
11: end while
12: if Ii,j = Ti,j then
13: si,j,k ← Pi,j [Ii,j]
14: end if
15: end for
16: end for

Algorithm 4.7 Signed Distance
1: for each voxel p(i, j, k) do
2: d← 0
3: if p is not a site then . |φ| has been calculated for each site in Algorithm 4.1
4: d← ‖(i, j, k)− si,j,k‖ . s is the closest site to p
5: end if
6: φp ← (1− 2|p|)

(
d+

∣∣∣φsi,j,k

∣∣∣) . |p| is the value of the voxel bit
7: end for

Algorithm 4.8 Voxel Merging
1: l← 1
2: while

∣∣∣V l−1
∣∣∣ ≥ 23 do

3: for each voxel V l(i, j, k) do
4: if

∧(
φl−1(x, y, z) < φb

)
, ∀V l−1(x, y, z) ∈ S li,j,k then

5:
∣∣∣V l(i, j, k)

∣∣∣← 1 .
∣∣∣V l(i, j, k)

∣∣∣ represents the bit of voxel V l(i, j, k)

6:
∣∣∣V l−1(x, y, z)

∣∣∣← 0, ∀V l−1(x, y, z) ∈ S li,j,k
7: V l−1(x, y, z)← arg max φl−1(x, y, z), ∀V l−1(x, y, z) ∈ S li,j,k
8: φl(i, j, k)← φl−1(x, y, z)−

√
3 · 2l−2

9: ∇φl(i, j, k)← ∇φl−1(x, y, z)
10: end if
11: end for
12: l← l + 1
13: end while

41

5. Acceleration Structures

In our project, the purpose of using acceleration structures is twofold: 1) efficient collision
detection and neighbor finding for each time step of the simulation; 2) searching for the
skin particles (see below) for the mesh.

For a rigid body, the new vertex positions of the mesh can be determined by the translation
and the rotation of the rigid body calculated during the shape matching. For a deformable
object, however, the new vertex positions cannot be calculated this way to achieve the
visual effect of deformation. Instead, the new position of each vertex is derived from a
few particles (namely skin particles) closest to it during the initialization, which needs a
k-nearest neighbors (k-NN) search for each vertex.

For a deformable body consisting of n particles, the mesh of which consisting ofm vertices,
the complexity of brute force search is O(m · n). Brute force search could be very slow
for large rigid bodies and complicated meshes. Therefore, we use a uniform hash grid to
accelerate the k-NN search.

As aforementioned, a uniform hash grid is not suitable for the collision detection when
simulating scenes consisting of differently sized particles, therefore we use the BVH in our
solver to accelerate the collision detection.

5.1 Uniform Hash Grid
5.1.1 Two Construction Methods

Green [2008] proposed two different methods for the construction of a hash grid: 1) a
relatively simple method which requires the GPU to support atomic operations; 2) a more
complex but efficient method using fast radix sort.

In both methods, the edge length of the cells is set to be the same as the diameter of the
uniformly sized particles. During collision detection, for each particle i mapped into cell
j, all the particles mapped into cell i and all the neighbor cells have to be tested. This
corresponds to 9 cells in a 2D hash grid and 27 cells in a 3D hash grid.

The first step is the same for both methods, in which each thread i computes the index of
the cell j into which particle i is mapped, then

(a) In the method which relies on atomic operations, each thread i atomically increases
the counter of the cell j by one. With atomicAdd, multiple threads can update the

42

5.1. Uniform Hash Grid 43

counter of the same cell simultaneously without conflicts. The return value k of the
function atomicAdd is exactly the index of the particle ID in the array preallocated
to cell j which stores all the IDs of the particles mapped into cell j, and thread i
will set the kth element of the array to the ID of particle i (table 1 in Fig. 5.1);

(b) In the method based on sorting, the pair (j, i) is set to be the ith element of a list
of size N , where N is the number of the particles, resulting in an unsorted list. The
list will be sorted by the cell indices. Finally, for each cell, its offset in the list will
be recorded. For an empty cell, the offset is set to an impossible value such as ∞
(table 2 in Fig. 5.1). The particles mapped into cell j can be efficiently found by
the offset of j.

Fig. 5.1: Table 1 and Table 2 correspond to the data structures maintained by the method
using atomic operations and the method using radix sort to construct the 2D
hash grid on the left, respectively.

There are two problems with the method using atomic operations:

(1) The array for storing particle IDs has to be preallocated on the GPU, which should
be large enough to avoid missing collisions when the particles are not uniformly
distributed. Thus a huge amount of memory is required;

(2) The write operations will be serialized if multiple threads update the counter of the
same cell simultaneously, which causes performance degradation.

On the other hand, the radix sort used in the sorting-based method can be efficiently imple-
mented on the GPU [Le Grand, 2007; Satish et al., 2009]. The total memory requirement
of the sorting-based method in number of 32-bit integer is n+ n+ d1d2d3 = 2n+ d1d2d3
when using a hash grid of size d1 × d2 × d3, namely n int32_ts for particle indices, n
int32_ts for hash values of the particles, and d1d2d3 int32_ts to record the offsets of the
grid cells.

To sum up, compared to the sorting-based method, the atomic-based method is slower
and more sensitive to the distribution of the particles, as noted by Green [2008].

5.1.2 k-Nearest Neighbors Search

For the special case of finding skin particles (Fig. 5.2), it is guaranteed there will be no
more than one particle being mapped into the same cell if the edge length of the grid cells
is set to be the same as the diameter of the boundary particles of the mesh (cf. Section
4.4.3), thus an atomic operation is unnecessary when using the atomic-based method.

43

44 5. Acceleration Structures

After the mapping between particles and cells of the hash grid has been established, the k
nearest particles for each vertex can be found iteratively by increasing the search radius r
by one in each iteration, starting with r = 0 (i.e. the cell into which the vertex is mapped).

The weight w of particle i in the determination of the position of vertex v is calculated based
on a monotonically decreasing function of the distance between particle i and vertex v,
subject to the condition that w is positive and normalized such that the sum of the weights
of the k particles neighboring to vertex v is one.

Fig. 5.2: After the voxelization, particles a – h (only the centers are drawn) are generated
for pentagon ABCDE. The nearest k particles for each vertex can be efficiently
found through the use of a hash grid.

5.2 BVH Construction on the GPU
To achieve real-time collision detection, we implemented the algorithm presented by Karras
[2012], in which the BVH is constructed from a hierarchical representation of the Morton
codes of the particles derived from their positions.

5.2.1 Morton Code

Given the unit interval I = [0, 1] and the unit square S = [0, 1]d, a space-filling curve is a
curve fS(I) which establishes the mapping f : I → S. One simple mapping for d = 2 is
defined by

f(t) = f(02.b1b2b3b4b5b6 . . .) =
(
sx

sy

)
=
(

02.b2b4b6 . . .

02.b1b3b5 . . .

)
(5.1)

and the inverse mapping is defined by

g

(
sx

sy

)
= g

(
02.b2b4b6 . . .

02.b1b3b5 . . .

)
= 02.b1b2b3b4b5b6 . . . , (5.2)

where 02.b1b2b3b4b5b6 . . . and
(02.b2b4b6...

02.b1b3b5...

)
are the binary representations of t ∈ I and(sx

sy

)
∈ S, respectively. This mapping is known as Morton order, and t is the Morton

code of
(sx
sy

)
. All image points that share the same sequence of binary digits lie in a

common subsquare of side length 2−n, where n is the length of the shared sequence.
The sequentialisation of the subsquares generates Z-curve numbering pattern (Fig. 5.3),
therefore Morton order is also known as Z-order [Bader, 2012].

44

5.2. BVH Construction on the GPU 45

For infinite sets, neither Z-order mapping nor the inverse mapping is bijective, as shown
through an example given by Bader [2012]:

f

(1
2

)
= f(02.1) =

(
02.0
02.1

)
=

 0
1
2

 (5.3)

and

f

(1
6

)
= f(02.0010101 . . .) =

(
02.00000 . . .
02.01111 . . .

)
=

 0
1
2

 . (5.4)

However, by restricting the spatial subdivision to a specific level, and that 0 ≤ ‖sx‖b −
‖sy‖b ≤ 1, where ‖sx‖b and ‖sy‖b are the number of bits of the binary representations of
sx and sy respectively, both mappings are bijective. In three dimensions, it is required
that 0 ≤ ‖sx‖b − ‖sy‖b ≤ 1 and 0 ≤ ‖sy‖b − ‖sz‖b ≤ 1. For convenience, each cell of the
subdivided space is usually defined as a unit square with edge length equal to 1.

Fig. 5.3: The Morton codes in 2D, with 3 bits for x-coordinate and 2 bits for y-coordinate.
There is an array of particles a – h in the 2D space, and these particles are sorted
based on their Morton codes. The black colored numbers are the indices of the
particles in the sorted array.

For collision detection between particles, the coordinate of the cell into which particle i is
mapped

xbi =

xbi,x
xbi,y
xbi,z

 =
⌊xi − bmin

d

⌋
, (5.5)

where xi is the coordinate of the particle center, bmin is the corner point of the scene
space with the minimum coordinate and d is the diameter of the smallest particle. The

45

46 5. Acceleration Structures

Morton code for particle i can be constructed by interleaving the successive bits of xbi,x,
xbi,y and xbi,z, from the least significant bit (LSB) to the most significant bit (MSB), from
x-coordinate to z-coordinate. Lauterbach et al. [2009] used the barycenter of each triangle
primitive as the representative point for scenes containing triangle meshes.

Fig. 5.4: The Hilbert curve at the third iteration, in which the space is divided into 23×23

subsquares.

In contrast to more complicated space-filling curves such as Hilbert curve (Fig. 5.4), which
only connect neighboring grid cells, Z-curve is obviously not continuous. For example,
there is a big jump between the cell with the Morton code 01111 and the cell with the
Morton code 10000 in Fig. 5.3. However, the Morton code for each point can be calculated
directly from its coordinate, while the constructions of other space-filling curves are more
expensive [Lauterbach et al., 2009].

5.2.2 Binary Radix Trees

Given a set of n keys k0, k1, . . . , kn−1 represented as bit strings, a binary radix tree is a
hierarchical representation of their common prefixes, in which the internal nodes represent
the common prefixes of different length, with the keys being the leaf nodes. Each internal
node of the binary radix tree contains exactly two children. Let N be the number of all
the nodes in the tree, the number of the nodes except the root is 2(N − n), which should
be equal to (N − 1), thus N = 2n− 1, and the number of the internal nodes is (n− 1).

If the keys are Morton codes, the internal nodes correspond to the subsquares of different
sizes in the D−dimensional space filled by the Morton curve. Given an array of n points
whose Morton codes are the keys of a binary radix tree, each pair of two consecutive
points in the sorted array based on their Morton codes is split by a (D − 1)-dimensional
hyperplane. The subsquare of some internal node is also split by the hyperplane into two
subregions, which correspond to the two children of that internal node (cf. Fig. 5.3 and
Fig. 5.5). Since there are (n−1) hyperplanes, the number of internal nodes is also (n−1).

Assuming that the keys are already sorted, the keys covered by each node can be repre-
sented as a linear range [i, j]. Following the notation proposed by Karras [2012], let δ(i, j)
be the length of the longest common prefix between keys ki and kj , then

δ(i′, j′) ≥ δ(i, j), ∀i′, j′ ∈ [i, j], (5.6)

thus the prefix corresponding to a given node can be exclusively determined by com-
paring its first key and last key. Let γ ∈ [i, j − 1] be the index of the last key whose
(δ(i, j) + 1)-th bit is 0, then the node will be partitioned into two children represented by
the subranges [i, γ] and [γ+1, j], respectively. Further partitions for the resulting children

46

5.2. BVH Construction on the GPU 47

Fig. 5.5: An example of the binary radix tree given by Karras [2012]. The keys (i.e. the
leaves) correspond to the Morton codes of the particles in Fig. 5.3.

can be proceeded similarly. γ is termed split position by Karras [2012]. Each split position
corresponds to a hyperplane in the space filled by the Morton curve.

For example, in Fig. 5.5, the root corresponds to the range [0, 7] with δ(0, 7) = 0. Since
key k3 is the last key whose first bit is 0 and the next key k4 starts with 1, γ = 3 for the
root node, which results in the subregion [0, 3] for internal node 3 and [4, 7] for internal
node 4. Because δ(0, 3) = 2 and the last key with the first 3 bits being 0 is k1, γ = 1 for
the internal node 3, leading to the subregions [0, 1] and [2, 3], which correspond to internal
nodes 1 and 2, respectively. These split positions correspond to the yellow colored split
lines in Fig. 5.3.

The height h of the resulting tree is bounded by the length l of the Morton code, i.e.
h ≤ l+ 1. In the extreme, if each Morton code mapped to a coordinate in the space filled
by the Morton curve is used as a key for the construction of the tree, l times of splitting
are needed, resulting in a tree with height l + 1.

5.2.3 Construction of Binary Radix Trees
A binary radix tree can be recursively constructed by finding the split position and creating
the child nodes for each node, starting from the root. This approach is inherently sequential
as the coverage of one node depends on its ancestors. By assigning indices to the internal
nodes in a way that their children can be found without earlier results, Karras [2012]
proposed a highly parallel algorithm for constructing binary radix trees.

They stored the leaf nodes and the internal nodes in two separate arrays L and I, such
that the root is located at I0, and the children of each internal node which covers the
interval [i, j] are placed according to the split position γ of that node. The left child is
located at Iγ with the coverage [i, γ] if it covers more than one key, namely min(i, j) < γ,
otherwise it is a leaf located at Lγ . Similarly, the right child is located at Iγ+1 with the
coverage [γ + 1, j] if max(i, j) > γ + 1, otherwise it is a leaf located at Lγ+1 (Fig. 5.5).
Evidently, the index of every internal node coincides with either its first or last key.

The other end of the range for each internal node can be efficiently found by looking at
the nearby keys. Specifically, for an internal node Ii, the first step is to determine the

47

48 5. Acceleration Structures

“direction” d of its range by looking at the neighboring keys ki−1, ki, and ki+1, where
d = +1 for a range beginning at i and d = −1 for a range ending at i. Due to the fact
that each internal node covers at least two keys, ki and ki+d are definitely covered by Ii.
On the other hand, ki−d has to be covered by the sibling node Ii−d, as siblings are always
located next to each other in array I.

Algorithm 5.1 Construction of a Binary Radix Tree [Karras, 2012]
1: for each internal node with index i ∈ [0, n− 2] in parallel do
2: d← sign(δ(i, i+ 1), δ(i, i− 1))
3: δmin ← δ(i, i− d)
4: lmax ← 2
5: while δ(i, i+ lmax · d) > δmin do
6: lmax ← lmax · 2
7: end while
8:
9: l← 0

10: for t = lmax/2, lmax/4, . . . , 1 do . binary search for j
11: if δ(i, i+ (l + t) · d) > δmin then
12: l← l + t
13: end if
14: end for
15: j ← i+ l · d
16:
17: s← 0
18: for t = dl/2e, dl/4e, . . . , 1 do . binary search for γ
19: if δ(i, i+ (s+ t) · d) > δ(i, j) then
20: s← s+ t
21: end if
22: end for
23: γ ← i+ s · d+ min(d, 0)
24:
25: if min(i, j) = γ then
26: left← Lγ
27: else
28: left← Iγ
29: end if
30: if max(i, j) = γ + 1 then
31: right← Lγ+1
32: else
33: right← Iγ+1
34: end if
35: Ii ← (left, right)
36: end for

By definition, the keys covered by Ii share a common prefix different from the one shared
by the keys covered by the sibling node of Ii, which gives the lower bound δmin = δ(i, i−d)
for the length of the prefix. For each key kj covered by node Ii, δ(i, j) > δmin. Therefore
the direction can be determined by

d = sign(δ(i, i+ 1), δ(i, i− 1)). (5.7)

48

5.3. BVH Traversal on the GPU 49

Due to the same reasoning, the other end of the range can be found by searching for the
largest l such that δ(i, i+ ld) > δmin. Let q be the minimum positive integer such that

δ(i, i+ 2qd) = δ(i, i+ lmaxd) < δmin = δ(i, i− d), (5.8)

then l can be found using binary search (Line 9 – 14 of Algorithm 5.1) in the range
[0, lmax − 1], and the other end j = i+ ld.

The split position γ can also be determined by performing a similar binary search (Line
17 – 22 of Algorithm 5.1) for the largest s ∈ [0, l − 1] which satisfies δ(i, i+ sd) > δ(i, j).
If d = +1, γ = i + sd corresponding to the largest index of the keys covered by the left
child. If d = −1, γ = i+ sd− 1 to account for the inverted indexing.

Finally, given i, j and γ, the locations of the children of Ii can be easily found, including
the indices and the pointers to the corresponding arrays. For the BVH construction, the
parent pointers for the two children should also be recorded at this step.

Providing that the length of the keys is fixed, δ(i, j) can be efficiently calculated by count-
ing the leading zero bits of the logical xor between the two keys, which can be realized by
the integer intrinsic functions in CUDA: _clz() for 32-bit keys and _clzll() for 64-bit
keys.

5.2.4 BVH Construction

Karras [2012] presented methods for constructing BVHs, octrees and k-d trees from binary
radix trees. Given a set of particles, the BVH can be constructed in four steps:

(1) Calculate the Morton codes based on the positions of the particle centers;
(2) Sort the indices of the particles based on their Morton codes;
(3) Construct a binary radix tree;
(4) Calculate the bounding volumes for all the internal nodes.

The construction of binary radix trees relies on the keys being unique. However, it is
possible that duplicated Morton codes are generated in step 1 when two particles are so
close to each other that the quantized coordinates for both of them are identical. Karras
[2012] solved this problem by using the indices i and j as fallback of the two identical keys
ki and kj when evaluating δ(i, j).

In step 4, each thread starts from one leaf node and walks up the tree using parent pointers
recorded during the construction of the binary radix tree, and atomically increases the
counter of the node being visited using atomicAdd. The thread terminates immediately
if the return value of atomicAdd is 0. Otherwise, the thread will calculate the bounding
volume for that node. Due to the bottom-up approach, the bounding volumes of the
children of node i must haven been computed before node i gets visited.

An intuitive and simple choice for the bounding volumes of particles is a sphere. However,
we found that for scenes containing many large rigid bodies, AABBs result in better
performance.

5.3 BVH Traversal on the GPU
5.3.1 Traversal Using Stacks

The most popular method to traverse a tree is to use a stack. Because shared memory
on a CUDA device is generally not large enough for a typical scene consisting of tens of
thousands particles, we implemented the stack on global memory. To reduce the global

49

50 5. Acceleration Structures

memory access, which is generally expensive for GPU devices, we copy the indices of the
nodes into global memory only when necessary (Algorithm 5.2).

Algorithm 5.2 BVH Traversal Using Stack
1: N ← iroot . set the top of the stack S to the index of root, cf. Section 5.2.2
2: T ← 0 . T is the index of the top of the stack
3: while T ≥ 0 do
4: T ← T − 1 . pop the top element of the stack
5: if N is a leaf node then
6: process leaf
7: else
8: CL ← index of the left child of N
9: CR ← index of the right child of N

10: test CL and CR
11: if both accepted then
12: find the near child Cnear and the far child Cfar, . Cnear, Cfar ∈ {CL, CR}
13: T ← T + 1
14: S[T]← Cfar . copy the index of the far child to global memory
15: T ← T + 1
16: N ← Cnear . set the top of the stack S to the near child
17: else if only Ci accepted then . Ci ∈ {CL, CR}
18: T ← T + 1
19: N ← Ci
20: else if T ≥ 0 then
21: N ← S[T]
22: end if
23: end if
24: end while

5.3.2 Stack-less Traversal

The parallel implementation of the stack-based traversal needs to maintain a full stack
for each particle, thus the storage and bandwidth costs could be very high. Hoping that
traversal without stack could possibly increase the performance, we also implemented the
sparse stack-less traversal algorithm 5.3 proposed by Barringer and Akenine-Möller [2013]
and a similar but more efficient algorithm 5.4, namely MBVH2 proposed by Áfra and
Szirmay-Kalos [2014].

Both algorithms use an integer variable bitstack to keep track of the traversal level. The
variable bitstack should be at least h bits long, where h is the height of the tree. In
our project, we use a 64-bit integer for bitstack. However, bitstack can be efficiently
implemented for higher trees. To ensure that the height of the BVH will not exceed 64
and that the space covered by the Morton codes is sufficient for typical scenes, we used 15
bits for each component of the quantized coordinates, thus a 64-bit integer is large enough
for each Morton code. The maximum height of the BVH will be 46 when there are no
duplicated keys, and will not exceed 64 as long as the total number of the particles is less
than 232 = 4 294 967 296, because the indices of the particles are used when they have the
same Morton code, which still results in a binary radix tree. In fact, given n particles,
and let m be the number of their unique Morton codes, the maximum height of the binary
radix tree can be achieved when (n −m + 1) particles have the same Morton code, and
the resulting height is h = 1 + log2m+ log2(n−m+ 1) ≤ −1 + 2 log2(n+ 1). Therefore,
to keep h ≤ 64, the maximum number of particles is n = b

√
265 − 1c.

50

5.3. BVH Traversal on the GPU 51

Both stack-less traversal algorithms heavily rely on the siblings of the nodes. Therefore
we also construct an array of sibling pointers during the construction of the BVH. The
extra expense of building such an array is very low, since the sibling of node i is going
to be accessed anyway to compute the bounding volume of the parent of node i, and
the array of the Morton codes (n × 64-bit) can be reused for storing the sibling indices
((2n− 1)× 32-bit) as the Morton codes are no longer in use after the construction of the
binary radix tree (cf. Section 5.2.4), where n is the number of particles. Table 5.1 shows
the memory requirement for stack-less BVH traversal and construction using bounding
spheres and using AABBs.

Indices Morton
codes

parents children Bounding
Volumes

Total

Bounding spheres n 2n 2n− 1 2(n− 1) 4(n− 1) 11n− 7
AABBs n 2n 2n− 1 2(n− 1) 6(n− 1) 13n− 9

Table 5.1: Memory requirement for stack-less traversal in number of 32-bit Integers.

MBVH2 terminates the traversal immediately when bitstack becomes 0 (Line 25 of algo-
rithm 5.4), whereas the sparse traversal exits the loop only when it returns to the root node
(line 28 of Algorithm 5.3), and the bitwise operation is typically more efficient than arith-
metic operation (such as the increment operator in Line 17 of algorithm 5.3). Therefore,
MBVH2 is slightly more efficient than the sparse traversal algorithm.

Algorithm 5.3 Sparse Stack-less Traversal [Barringer and Akenine-Möller, 2013]
1: bitstack← 0
2: N ← iroot
3: repeat
4: if N is a leaf node then
5: process leaf
6: else
7: CL ← index of the left child of N
8: CR ← index of the right child of N
9: test CL and CR

10: if any accepted then
11: bitstack← bitstack� 1
12: if both accepted then
13: find the near child Cnear and the far child Cfar . Cnear, Cfar ∈ {CL, CR}
14: N ← Cnear
15: else if only Ci accepted then . Ci ∈ {CL, CR}
16: N ← Ci
17: bitstack← bitstack + 1
18: end if
19: continue
20: end if
21: end if
22: bitstack← bitstack + 1
23: while bitstack ∧ 1 = 0 do . ∧: bitwise and
24: N ← parent(N)
25: bitstack← bitstack� 1
26: end while
27: N ← sibling(N)
28: until N = iroot

51

52 5. Acceleration Structures

Algorithm 5.4 MBVH2 Stack-less Traversal [Áfra and Szirmay-Kalos, 2014]
1: bitstack← 0
2: N ← iroot
3: loop
4: if N is a leaf node then
5: process leaf
6: else
7: CL ← index of the left child of N
8: CR ← index of the right child of N
9: test CL and CR

10: if any accepted then
11: bitstack← bitstack� 1
12: if both accepted then
13: find the near child Cnear and the far child Cfar . Cnear, Cfar ∈ {CL, CR}
14: N ← Cnear
15: bitstack← bitstack ∨ 1 . ∨: bitwise or
16: else if only Ci accepted then . Ci ∈ {CL, CR}
17: N ← Ci
18: end if
19: continue
20: end if
21: end if
22:
23: while bitstack ∧ 1 = 0 do . ∧: bitwise and
24: if bitstack = 0 then
25: return
26: end if
27: N ← parent(N)
28: bitstack← bitstack� 1
29: end while
30: N ← sibling(N)
31: bitstack← bitstack⊕ 1 . ⊕: bitwise xor
32: end loop

5.3.3 Further Optimization

We note that the traversal algorithms 5.2 – 5.4 actually do some unnecessary test by
starting from the root node of the BVH, because the bounding volumes of all the ancestors
of particle p unconditionally collide with particle p. To avoid such extra work, we start
the traversal from the leaf node, i.e. the particles.

Algorithm 5.5 Bottom-Up Traversal
1: for each particle p do
2: R← sibling(p)
3: while R 6= root do
4: traverse the subtree rooted at R with one of the algorithms 5.2 – 5.4
5: P ← parent(R)
6: R← sibling(P) . sibling(root) = root
7: end while
8: end for

52

5.3. BVH Traversal on the GPU 53

Fig. 5.6: A binary tree

For example, in Fig. 5.6, both of the internal nodes 12 and 9 will be tested for particle
2 when using the top-down algorithms 5.2 – 5.4. However, these tests will be directly
skipped by the bottom-up traversal algorithm 5.5. Precisely, only particle 3, the subtrees
rooted at internal nodes 8 and 13 will be tested, thereby saving O(logn) tests for each
particle, where n is the number of the particles.

Noticing that the solver will not generate contact constraints between the particles of the
same rigid body, we optimize the collision detection for rigid body particles by comparing
the phases (cf. the structure of particle attributes at the beginning of Chapter 3) of each
internal node Ii and the particle Lj being inspected. The collision test will be immediately
skipped if particle Lj belongs to some rigid body and Ii has the same phase as Lj . The
phases of internal nodes can be efficiently determined during the BVH construction (cf.
Section 5.2.4). Specifically, if the two children of an internal node Ii have the same phase,
the phase of node Ii is set to be the same as its children. Otherwise, the phase of Ii is
set to an impossible value. In this way, all the particles covered by the internal node Ii
and particle Lj belong to the same rigid body if the phase of particle Lj and the phase of
node Ii are the same. We did not allocate extra memory for the phases of internal nodes.
Instead, we used the array of the counters for constraint averaging to store the phases of
internal nodes temporarily (Eq. 3.25 in Section 3.1.4).

53

6. Implementation and Results

We implemented the solver using CUDA 8.0 on GeForce GTX 1060 (Laptop), installed
in a notebook with 2.6 GHz Intel Core i7-6700HQ CPU running Windows 10. All the
solver data are stored in one dimensional arrays on the GPU allocated in linear memory
using cudaMalloc except for the structure of the solver parameters, which is declared in
constant memory space. For voxelization and SDF construction on the GPU, we also used
one dimensional arrays in global memory.

For linear transformations of the data, filling arrays of non-char types and sorting, we
used the data parallel primitives provided by the thrust library, which is a C++ template
library for CUDA based on the Standard Template Library and included in the CUDA
toolkit [NVIDIA, 2017b].

6.1 Rigid Bodies
For the SDF construction, We merged step 2 and step 3 into one kernel, and implemented
step 4 and step 5 using the same kernel code with different parameters, namely changing
the processing direction from “column” to “aisle” (Section 4.4.2).

For comparison, we also implemented the fast marching method (FMM, cf. Section 2.6)
for the SDF construction on the CPU. Voxelization on the CPU is implemented with ray
marching, in which the intersection of rays against triangles is accelerated by the BVH
implemented on the CPU.

Model #triangles Grid size #voxels GPU CPU

Box 12 323 32 768 1.51 0.71
963 884 736 10.20 8.73

Stanford bunny 5 002 323 6 620 0.56 7.24
963 177 695 0.53 25.79

Armadillo 30 000 323 2 250 0.58 43.56
963 60 714 0.55 62.13

Stanford dragon 47 794 323 1 854 0.64 64.33
963 49 921 0.63 90.14

Table 6.1: Running time (in ms) for voxelization on the GPU and CPU.

The results of the solid voxelization are shown in Table 6.1. For simple meshes consisting
of only a few triangles, CPU implementation is more efficient. However, as the number of

54

6.1. Rigid Bodies 55

triangles increases, the BVH construction and traversal become more expensive, thus the
time expense increases rapidly. In contrast, the GPU implementation can fully utilize the
GPU computing power when the number of triangles gets large. Larger grid sizes result
in slightly better performance, because there are less voxels shared by multiple threads,
which can mitigate the serialization due to atomic operations.

Model Grid size #voxels CPU GPU Merge #voxels (merged)

Box 323 32 768 48.01 2.45 1.67 10 963 (-66.5%)
963 884 736 1686.41 19.71 4.09 107 967 (-87.8%)

Stanford
bunny

323 6 620 47.32 2.48 1.35 4 023 (-39.2%)
963 177 695 2057.06 16.94 3.35 46 606 (-73.8%)

Armadillo 323 2 250 48.12 2.53 1.58 1 977 (-12.1%)
963 60 714 2063.54 15.98 3.28 29 025 (-52.2%)

Stanford
dragon

323 1 854 49.77 2.20 1.23 1 805 (-2.6%)
963 49 921 2044.61 15.13 3.96 29 201 (-41.5%)

Table 6.2: Running time (in ms) for SDF construction on the CPU, SDF construction and
voxel merging on the GPU. The last column shows the number of voxels after
merging and the percentage reduction.

The results of the SDF construction are shown in Table 6.2. It is evident that the GPU
implementation is far more efficient than the CPU implementation. The number of voxels
can be greatly reduced by merging the voxels in most cases. Voxel merging does not work
well on the dragon model with grid size 323 due to the fact that the model is very thin,
thereby resulting in many voxels near the boundary of the mesh, which should not be
merged.

Fig. 6.1: SDF of three models. Some voxels are removed for better visualization. The
magnitude of the signed distance of blue-colored voxels is larger than yellow-
colored ones.

During shape matching (Section 4.1), to calculate the translations and the sum of particle
weights for rigid bodies, the reduction primitives of the thrust library can be directly used
in the kernel, and each thread processes one rigid body. However, this naïve implementa-
tion may lead to underutilization of the parallel cores.

To increase parallelism, we used the primitive DeviceSegmentedReduce of the CUB li-
brary, which can take advantage of the dynamic parallelism supported by CUDA devices
of compute capability 3.5 and higher to achieve better performance. With dynamic par-
allelism, a CUDA kernel is able to create and synchronize with new work directly on the
GPU, which reduces the need to transfer execution control and data between host and
device [NVIDIA, 2017a].

55

56 6. Implementation and Results

(a) solid voxelization (b) SDF (c) Level 0

(d) Level 1 (e) Level 2 (f) Level 3

Fig. 6.2: Voxelization and SDF of the Stanford bunny. The image on the top left is the
voxelization before merging, and the image next to it is the corresponding SDF,
with part of the voxels removed for better visualization. After merging, four
levels 0 – 3 are generated.

For comparison we measured two scenes consisting of 216K particles. In the first scene,
there are 103 boxes and each of them consisting of 63 particles; In the second scene, there
are 53 boxes and each of them consisting of 123 particles. Table 6.3 shows the results.
Although the two implementations are almost equally efficient for the first scene, the
naïve implementation becomes significantly slower when the rigid bodies get larger. In
contrast, with CUB the performance is even slightly better for the second scene because
fewer rigid bodies need fewer reductions.

Scene 1 (103 × 63) Scene 2 (53 × 123)
Naïve implementation 1.07 3.14

Implementation with CUB 1.02 0.99

Table 6.3: Running time (in ms) for shape matching on the GPU. Scene 1 consists of 1000
boxes, each of which consists of 216 particles; Scene 2 consists of 125 boxes,
each of which consists of 1728 particles.

6.2 Collision Detection
Since collision test is the most performance-critical part, for which we replaced the hash
grid with the BVH, it is very important to fairly compare these methods. To achieve a fair
comparison for scenes of rigid bodies, we tested our solver for the scene consisting of 53

boxes, each of which consisting of 63 particles (Fig. 6.3). The box shape is chosen because
it is relatively stable, thus more suitable for testing the performance of these methods
compared to other shapes such as Stanford bunnies, which can easily be separated apart

56

6.2. Collision Detection 57

from each other by the collision constraints. The boxes are voxelized into 123 particles,
which seems to be unnecessarily high. However, a coarser voxelization is not apposite for
other shapes due to under-sampling on the boundary. To test scenes consisting of granular-
like particles, we simply replaced the shape matching constraints for the rigid bodies with
collision constraints. Therefore, both scenes consist of 216K particles. Large amounts
of particles also improve the accuracy of the running time measurement, and ensure the
scalability of these methods. We also applied voxel merging to the rigid bodies, which
leads to another test scene for rigid bodies consisting of 153K particles. For comparison,
we implemented the hash grid of size 643 and of size 1283.

The array of neighbor indices (Line 7 of Algorithm 3.3 in Section 3.1.6) for each particle
should be preallocated on the GPU. For typical scenes, an array of length 32 for each
particle is usually large enough to achieve plausible simulations. Larger arrays would result
in unnecessary waste of memory, whereas smaller arrays might lead to visual artifacts.
Therefore we used an array of length 32 ·n for these test scenes, where n is the number of
particles.

The radius of the boundary particles is 75 mm, thus the edge length of a box is 1.8 m. The
box piles are located at h = 3.6 m with zero velocity at the beginning of the simulations,
and fall down towards the ground under gravity. The number of time steps is set to 2,
which means the collision test will be executed twice for each frame. We averaged the
measured running time on every 100 frames, and only recorded the measurement for the
first 800 frames, because all the scenes become almost stable after 800 frames.

Fig. 6.3: The two images on the left are the initial state and final state of the test scene
for rigid bodies respectively, and the two images on the right are the initial state
and final state of the test scene for granular-like particles respectively.

BVH construction consists of three parts: sorting, binary radix tree construction and
calculation of bounding volumes (bounding spheres or AABBs). As shown in Table 6.4,
the BVH construction is relatively fast. The bottleneck of the simulation largely lies on
the collision detection, as shown in Table 6.5 – Table 6.7.

Sorting Binary Radix Tree Bounding Spheres AABBs Total
153K 1.62 0.18 0.28 0.23 2.08 (2.03)
216K 2.03 0.22 0.36 0.31 2.61 (2.56)

Table 6.4: Average running time (in ms) for BVH construction in two scenes consisting of
153K particles and 216K particles, respectively. In the last column, the number
in parenthesis is the running time for BVH construction with AABBs.

From the beginning of the simulation to the 400th frame, the performance of both hash
grids is better, because for each collision, the complexity is O(logn) using BVH, where n is
the total number of particles, and the cost of using hash grid is constant. After many boxes
reach the ground, the performance of the hash grid of size 643 becomes the worst, because
most of the particles are mapped into the lower part of the hash grid. Meanwhile, the
BVH becomes more efficient, due to the fact that there is less overlap between bounding
volumes (Table 6.5 and Table 6.6). This degradation problem with hash grids is more
severe for scenes containing granular-like particles (Table 6.7).

57

58 6. Implementation and Results

BVH MBVH2
- 153K

Bot.Up
- 153K

Stack Sp.
- 153K

AABB
- 153K

Grid 643

Hash
1283

Hash
1 1.79 5.99 3.24 2.25 1.24 1.70 0.74 0.70
2 2.12 8.42 5.94 5.03 1.91 1.68 0.82 0.79
3 2.12 8.36 6.33 5.92 2.44 1.67 1.19 1.01
4 2.16 8.05 5.79 5.42 2.26 1.80 2.05 1.28
5 2.11 7.81 5.55 5.00 2.17 1.86 2.82 1.30
6 2.11 7.54 5.29 4.96 2.16 1.76 3.03 1.29
7 2.10 7.44 5.23 4.96 2.12 1.77 3.06 1.28
8 2.12 7.45 5.27 4.94 2.12 1.75 3.04 1.20

Table 6.5: Running time (in ms) for different traversal methods. Column BVH and Col-
umn Grid give the construction time of BVH and hash grid, respectively. The
BVH is tested for the scene of rigid boxes with differently sized particles gener-
ated using voxel merging. The hash grids are tested for the scene of rigid boxes
with uniformly sized particles, since it does not support particles of different
sizes. ColumnMBVH2-153K is the running time for MBVH2 (Algorithm 5.4);
Column Bot.Up-153K is the running time for the bottom-up algorithm 5.5 in
combination with MBVH2; Column Stack Sp.-153K is the running time for
the bottom-up algorithm 5.5 in combination with stack-based traversal. So far
these methods use exclusively bounding spheres for the BVH. Column AABB-
153K is the running time for the bottom-up algorithm 5.5 in combination with
stack-based traversal, but using AABBs for the BVH. All the BVH traversal
methods are optimized using the phase identifiers of internal nodes except the
MBVH2 top-down traversal (Section 5.3.3).

We also note that Column AABB-153K (Table 6.5) is only marginally better than Col-
umn AABB-216K (Table 6.6), compared to the 63K particles reduced by voxel merging.
The degradation is possibly caused by warp divergence in the scene consisting of differently
sized particles where two threads inside the same warp are more likely to take different
execution flows than in a scene consisting of uniformly sized particles.

As for memory requirement in number of int32_ts, compared to a hash grid, the stack-less
traversal with BVH using AABBs is more memory-efficient when 13n − 9 < 2n + d3, i.e.
when the number of the particles n < (d3+9)/11, where d3 is the hash grid size and n is the
number of particles (cf. Section 5.1.1 and Section 5.3.2). For d = 64, stack-less traversal
is more memory-efficient when n ≤ 23 832 and for d = 128, n ≤ 190 651. However, in the
test scenes for rigid bodies, 63K (0.29 ·n) particles are reduced by voxel merging, meaning
that 0.29 · 32n = 9.30n decrease in the length of the array of neighbor indices. Taking the
attributes of the rigid body particles into consideration, including positions (3n), predicted
positions (3n), velocities (3n), masses (n), phases (n), radii (n), SDF (4n), initial positions
(3n), position corrections (3n), counters for constraint averaging (n), weights for shape
matching (n), initial (3n) and current (3n) relative positions (Chapter 3 and Section
4.1), the total decrease in memory requirement is 0.29 · 30n + 9.30n = 18n. The total
change in memory requirement due to stack-less AABB traversal and voxel merging is
0.71 · (13n − 9) − 18n = −8.77n − 6.39, whereas the total change due to a hash grid of
size d3 is 2n+ d3. Therefore, voxel merging followed by BVH stack-less traversal for rigid
bodies is more memory-efficient.

6.3 Simulations
We use the bottom-up algorithm 5.5 in combination with the stack-based traversal for
collision detection accelerated by the BVH using AABBs as bounding volumes, since it is

58

6.3. Simulations 59

MBVH2
- 216K

Bot.Up
- 216K

Stack Sp.
- 216K

AABB
- 216K

643

Hash
1283

Hash
1 9.96 5.15 5.99 1.95 0.74 0.70
2 12.55 7.04 7.62 2.72 0.82 0.79
3 12.67 7.67 7.31 2.49 1.19 1.01
4 12.41 7.12 6.87 2.37 2.05 1.28
5 11.94 6.80 6.73 2.35 2.82 1.30
6 11.60 6.62 6.81 2.33 3.03 1.29
7 11.53 6.60 6.78 2.29 3.06 1.28
8 11.50 6.69 6.79 2.29 3.04 1.20

Table 6.6: Running time (in ms) for different traversal methods. The only difference from
Table 6.5 is that the BVH is tested for the scenes of rigid boxes with uni-
formly sized particles generated using voxel merging. Compared to Table 6.5,
the bottom-up algorithm using bounding spheres in combination with stack-less
MBVH2 (Column Bot.Up-216K) is occasionally more efficient than in combi-
nation with stack-based traversal (Column Stack Sp.-216K). This degradation
is probably caused by deeper stacks due to the 63K more particles.

Stack Sp.
- 216K

AABB
- 216K

643

Hash
1283

Hash
1 7.44 5.81 1.54 1.07
2 14.18 8.01 6.18 1.10
3 14.99 9.01 11.16 2.74
4 15.63 9.69 14.48 3.60
5 16.37 10.47 17.12 4.26
6 16.84 11.40 18.12 4.75
7 16.51 12.02 18.46 4.98
8 15.96 12.10 18.71 5.03

Table 6.7: Running time (inms) for different traversal methods in simulating the scene con-
sisting of 216K granular-like particles generated by replacing the shape matching
constraints for the rigid bodies with collision constraints. In this test, AABBs
(Column AABB-216K) still outperform bounding spheres (Column Stack
Sp.-216K).

the most efficient method to deal with differently sized particles.

For scenes consisting of rigid bodies, typically one time step of 16.7 ms per frame (corre-
sponding to 60 fps, which is the maximum refresh rate of most monitors), 6 solver iterations
and 2 pre-stabilization iterations (Section 3.1.5) per time step are enough. However, for
large granular piles, more solver iterations and pre-stabilization iterations are needed to
achieve satisfactory results (Fig. 6.4).

In contrast, according to our experiments, fluid simulations need 2 sub-steps per frame,
with each being 8.33 ms, 2 solver iterations and 2 pre-stabilization iterations per sub-step
to avoid large density estimation errors, otherwise individual fluid particles might be push
out of the fluids with very large velocities. The length of the neighbor index array for each
particle should be at least 48 in order to keep the density estimation accurate enough to
avoid unrealistic behavior of the fluid particles. A typical smooth kernel radius is 4 times
of the fluid particle radius. Because of the complexity of the BVH traversal and the fluid
constraint, the frame rates drop to ca. 40 fps with only 37.5K fluid particles.

59

60 6. Implementation and Results

Fig. 6.4: One large particle collides with a granular pile consisting of 64 934 particles. De-
spite the 16 solver iterations and 16 pre-stabilization iterations per time step
needed to keep the pile stable at the beginning of the simulation, real-time per-
formance (60 fps) can still be achieved. In the image on the right, the differently
sized particles are generated from merged voxels.

Fig. 6.5: A deformable bunny. By using a large grid size (603) for the voxelization, the
deformation can be realistically simulated.

Fig. 6.6: 80 bunnies are falling towards the ground. Each bunny is voxelized with the grid
size 203. The scene consists of 128 480 particles. With voxel merging, the number
of the particles is reduced to 104 960. Under both circumstances, 60 fps can be
achieved.

Fig. 6.7: In the image on the left, three large solid particles of different densities interact
with fluid particles; The image in the middle shows that Armadillo is thrown up
in the air by the fluid particles due to its small density; In the image on the right,
the fluid is torn apart by a heavy rigid body.

60

7. Conclusion

In this project we have successfully reduced the time expense on the initialization of scenes
by implementing and optimizing algorithms for fast voxelization and SDF constructions on
the GPU. We implemented and compared several algorithms for constructing and travers-
ing BVHs on the GPU, which enables us to simulate scenes containing tens of thousands
differently sized particles in real-time. Merging particles inside an object allows us to use
smaller particles on the surface of the object for a more detailed simulation in interactive
applications, meanwhile the total amount of particles are even less. Our methods are
preferable when the available memory is very limited.

7.1 Limitations
Nevertheless, there are still some limitations of these methods. The solid voxelization
(Section 4.3.3) may still suffer from numerical errors for regular meshes such as Cartesian
grids, because the voxel centers are very likely to be projected onto the edges of two parallel
triangles (Fig. 7.1). One possible solution might be to apply larger scale to the mesh than
the one used in Section 4.3.3, since this problem does not arise for the simple box mesh
consisting of 12 triangles.

Fig. 7.1: The solid voxelization is applied to a Cartesian grid. Some voxels are erroneously
classified. The red lines in the image on the right are the edges of the mesh
triangles.

Neighbor finding for fluid particles could be very slow when using the BVH due to the
requirement of smaller time steps and a relatively large SPH kernel radius.

One problem with the solver is the slow convergence caused by the shape matching con-
straint due to the inherent under-relaxation (Section 4.1.2) when one rigid body consists
of a large amount of particles. Besides, the shape matching constraint is only able to
simulate small deviations from the initial shape. Region-based shape matching [Bender
et al., 2015; Müller et al., 2005] can be used for larger deformations.

61

62 7. Conclusion

Another inherent problem with all the PBD-based simulations is tunneling due to high
velocities of the particles (Fig. 7.2a). Smaller time steps can mitigate this problem, but
the real-time performance might not be reached this way. For fluid rendering, the screen
space techniques [Green, 2010] are very popular for real-time applications. However, it
could be problematic under some circumstances (Fig. 7.2b).

(a) Tunneling (b) Fluid surface

Fig. 7.2: The image on the left shows the tunneling between fluid particles and the bowl
due to its thin-shell structure; The image on the right shows the fluid surface
rendered in screen space by the NVidia Flex demo. The shape of the particles is
still visible when the camera comes close to the surface.

7.2 Future Work
In the future, we would like to integrate fracture effect (Fig. 7.3b), namely the dynamic de-
struction of objects into the particle-based framework using the fast GPU voxelization and
SDF construction algorithms. An apposite method for adaptively weighting the particles
in shape matching would be desirable to achieve faster convergence (Section 4.1.2).

As has been described in the previous chapter, the hash grid becomes less efficient when
the distribution of the particles concentrates on a 2D plane. This problem could possibly
be mitigated by shaping the hash grid according to the distribution of the particles. One
simple way is to change the size of the grid based on the AABB of the particles, which
can be efficiently determined by two reductions.

In neighbor finding for fluid particles, it could be possible to directly use the Morton curve
when simulating scenes consisting of differently sized particles, thereby reducing the cost of
the BVH traversal. However, one should be very careful when using this approach, because
the behavior of fluids is very sensitive to density estimation errors. For fluid rendering,
we would like to reconstruct the fluid surface using the method proposed by Zhou et al.
[2011]. Although the behavior of fire is also governed by the fluid constraint, the rendering
of fire could be very challenging, and most of the current implementations take an Eulerian
approach (Section 2.3). It is very intriguing to integrate the fire simulation into the unified
particle-based solver.

(a) (b) (c)

Fig. 7.3: The two images on the left show the fracture simulation by Müller et al. [2013];
The image on the right shows the fire simulation using NVidia Flameworks System
which takes an Eulerian approach [Green and Chentanez, 2014].

62

Index

2D proximate site, 35
3D proximate site, 36

aisle, 35
amplification matrix, 15

bilateral constraint, 12

closest feature voxel (CFV), 8
column, 35
Constraints, 12
covariance matrix, 26

distance transform (DT), 8
dominate, 36, 37

edge function, 32
Eulerian scheme, 5
explicit Euler method, 3

fast marching method (FMM), 9
Feature voxels (FVs), 8
Free particles, 22
Frobenius-norm, 26

Gauss-Seidel, 15
goal position, 26
Gram-Schmidt orthogonalization, 27

Hilbert curve, 46
holonomic, 12

implicit Euler integration, 3
incompressible Navier–Stokes equations,

5
iteration matrix, 15

Jacobi method, 15

Lagrange multiplier, 14
Lagrangian schemes, 5
linear complementarity problem (LCP),

16

MBVH2, 11
Morton code, 44
Morton order, 44

particle sleeping, 18
phase identifier, 12
Position-Based Dynamics (PBD), 4
pre-stabilization, 18
Projected Gauss-Seidel, 15
Projected Jacobi, 16
Projection, 4

relative positions, 26
Row, 35
row, 35

Signed distance field (SDF), 7
sites, 8
skin particles, 42
slice, 35
Smoothed Particles Hydrodynamics (SPH),

5
smoothing kernel, 6
space-filling curve, 44
split position, 47
successive over-relaxation (SOR), 17
symplectic Euler method, 13

unilateral constraint, 12

vector template, 9
Verlet integration, 4
Voronoi cells, 8
Voronoi center, 8
Voronoi diagram, 8
Voronoi sites, 8

Z-curve, 44
Z-order, 44

63

Bibliography

A. T. Áfra and L. Szirmay-Kalos, “Stackless multi-bvh traversal for cpu, mic and gpu ray
tracing,” in Computer Graphics Forum, vol. 33, no. 1. Wiley Online Library, 2014, pp.
129–140.

G. Allaire and S. M. Kaber, Numerical linear algebra. Springer, 2008, vol. 55.

M. Bader, Space-filling curves: an introduction with applications in scientific computing.
Springer Science & Business Media, 2012, vol. 9.

R. Barringer and T. Akenine-Möller, “Dynamic stackless binary tree traversal,” Journal
of Computer Graphics Techniques, vol. 2, no. 1, pp. 38–49, 2013.

J. Bender, M. Müller, and M. Macklin, “Position-based simulation methods in computer
graphics.” in Eurographics (Tutorials), 2015.

Å. Björck, Numerical methods in matrix computations. Springer, 2015.

K. Bodin, C. Lacoursiere, and M. Servin, “Constraint fluids,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 18, no. 3, pp. 516–526, 2012.

R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions, contact and
friction for cloth animation,” ACM Transactions on Graphics (ToG), vol. 21, no. 3, pp.
594–603, 2002.

T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan, “Parallel banding algorithm to compute
exact distance transform with the gpu,” in Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. ACM, 2010, pp. 83–90.

K. Crane, I. Llamas, and S. Tariq, “Real-time simulation and rendering of 3d fluids,” GPU
gems, vol. 3, no. 1, 2007.

P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and image process-
ing, vol. 14, no. 3, pp. 227–248, 1980.

P. Danilewski, S. Popov, and P. Slusallek, “Binned sah kd-tree construction on a gpu,”
Saarland University, pp. 1–15, 2010.

M. Desbrun, P. Schröder, and A. Barr, “Interactive animation of structured deformable
objects,” in Graphics Interface, vol. 99, no. 5, 1999, p. 10.

C. Deul, P. Charrier, and J. Bender, “Position-based rigid-body dynamics,” Computer
Animation and Virtual Worlds, vol. 27, no. 2, pp. 103–112, 2016.

E. DiBenedetto, Classical Mechanics: Theory and Mathematical Modeling, ser. Corner-
stones. Birkhäuser Boston, 2010.

E. Eisemann and X. Décoret, “Single-pass gpu solid voxelization for real-time applica-
tions,” in Proceedings of graphics interface 2008. Canadian Information Processing
Society, 2008, pp. 73–80.

64

Bibliography 65

S. Fang and H. Chen, “Hardware accelerated voxelization,” Computers & Graphics, vol. 24,
no. 3, pp. 433–442, 2000.

K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and faster hlbvh with work
queues,” in Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics. ACM, 2011, pp. 59–64.

S. Green, “Cuda particles,” NVIDIA whitepaper, vol. 2, no. 3.2, p. 1, 2008.

——, “Screen space fluid rendering for games,” in Proceedings for the Game Developers
Conference, 2010.

S. Green and N. Chentanez, “Smoke and mirrors: Advanced volumetric effects for games,”
2014.

G. J. Grevera, “Distance transform algorithms and their implementation and evaluation,”
in Deformable Models. Springer, 2007, pp. 33–60.

M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek, “Efficient stack-less bvh
traversal for ray tracing,” in Proceedings of the 27th Spring Conference on Computer
Graphics. ACM, 2011, pp. 7–12.

M. J. Harris, “Fast fluid dynamics simulation on the gpu.” in SIGGRAPH Courses, 2005,
p. 220.

T. Hayashi, K. Nakano, and S. Olariu, “Optimal parallel algorithms for finding proximate
points, with applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 12, pp. 1153–1166, 1998.

K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computation of gen-
eralized voronoi diagrams using graphics hardware,” in Proceedings of the 26th annual
conference on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 277–286.

T. Jakobsen, “Advanced character physics,” in Game Developers Conference, vol. 3, 2001.

M. W. Jones, J. A. Baerentzen, and M. Sramek, “3d distance fields: A survey of techniques
and applications,” IEEE Transactions on visualization and Computer Graphics, vol. 12,
no. 4, pp. 581–599, 2006.

T. Karras, “Maximizing parallelism in the construction of bvhs, octrees, and k-d trees,”
in Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-
Performance Graphics. Eurographics Association, 2012, pp. 33–37.

M. N. Kolountzakis and K. N. Kutulakos, “Fast computation of the euclidian distance
maps for binary images,” Information processing letters, vol. 43, no. 4, pp. 181–184,
1992.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, “Fast bvh con-
struction on gpus,” in Computer Graphics Forum, vol. 28, no. 2. Wiley Online Library,
2009, pp. 375–384.

S. Le Grand, “Broad-phase collision detection with cuda,” GPU gems, vol. 3, pp. 697–721,
2007.

Y.-H. Lee, S.-J. Horng, and J. Seltzer, “Parallel computation of the euclidean distance
transform on a three-dimensional image array,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 3, pp. 203–212, 2003.

W. Li, Z. Fan, X. Wei, and A. Kaufman, “Gpu-based flow simulation with complex bound-
aries,” GPU Gems, vol. 2, pp. 747–764, 2003.

65

66 Bibliography

Y. Lu, “A framework for comparison of methods for solving complementarity problems
that arise in multibody dynamics,” Ph.D. dissertation, Rensselaer Polytechnic Institute,
2016.

L. B. Lucy, “A numerical approach to the testing of the fission hypothesis,” The astro-
nomical journal, vol. 82, pp. 1013–1024, 1977.

M. Macklin and M. Müller, “Position based fluids,” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, p. 104, 2013.

M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle physics for real-
time applications,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 153, 2014.

C. R. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm for computing exact
euclidean distance transforms of binary images in arbitrary dimensions,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 265–270, 2003.

J. J. Monaghan, “Sph without a tensile instability,” Journal of Computational Physics,
vol. 159, no. 2, pp. 290–311, 2000.

J. P. Morris, “Simulating surface tension with smoothed particle hydrodynamics,” Inter-
national journal for numerical methods in fluids, vol. 33, no. 3, pp. 333–353, 2000.

M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation for interactive
applications,” in Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation. Eurographics Association, 2003, pp. 154–159.

M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless deformations based on
shape matching,” ACM transactions on graphics (TOG), vol. 24, no. 3, pp. 471–478,
2005.

M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,” Journal
of Visual Communication and Image Representation, vol. 18, no. 2, pp. 109–118, 2007.

M. Müller, N. Chentanez, and T.-Y. Kim, “Real time dynamic fracture with volumetric
approximate convex decompositions,” ACM Transactions on Graphics (TOG), vol. 32,
no. 4, p. 115, 2013.

M. Müller, J. Bender, N. Chentanez, and M. Macklin, “A robust method to extract the
rotational part of deformations,” in Proceedings of the 9th International Conference on
Motion in Games. ACM, 2016, pp. 55–60.

A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Physically based de-
formable models in computer graphics,” in Computer graphics forum, vol. 25, no. 4.
Wiley Online Library, 2006, pp. 809–836.

NVIDIA, “Cuda c programming guide,” NVIDIA, January, 2017.

——, “Thrust quick start guide,” 2017.

J. Pantaleoni and D. Luebke, “Hlbvh: hierarchical lbvh construction for real-time ray
tracing of dynamic geometry,” in Proceedings of the Conference on High Performance
Graphics. Eurographics Association, 2010, pp. 87–95.

J. Pineda, “A parallel algorithm for polygon rasterization,” in ACM SIGGRAPH Computer
Graphics, vol. 22, no. 4. ACM, 1988, pp. 17–20.

S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2009.

A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture processing,” Journal
of the ACM (JACM), vol. 13, no. 4, pp. 471–494, 1966.

66

Bibliography 67

N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for manycore
gpus,” in Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 1–10.

J. Schneider, M. Kraus, and R. Westermann, “Gpu-based real-time discrete euclidean
distance transforms with precise error bounds.” in VISAPP (1), 2009, pp. 435–442.

M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid voxelization on gpus,” in
ACM Transactions on Graphics (TOG), vol. 29, no. 6. ACM, 2010, p. 179.

J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121–
128.

A. Witkin, M. Gleicher, and W. Welch, Interactive dynamics. ACM, 1990, vol. 24, no. 2.

K. Zhou, M. Gong, X. Huang, and B. Guo, “Data-parallel octrees for surface reconstruc-
tion,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 5, pp.
669–681, 2011.

67

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung
guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe. Die Arbeit
wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt und
von dieser als Teil einer Prüfungsleistung angenommen.

Karlsruhe, den September 16, 2017

(Chao Jia)

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Related Work
	2.1 Mass-Spring System
	2.2 Position Based Dynamics
	2.3 Fluid Simulation
	2.4 Unified Solver
	2.5 Voxelization
	2.6 Distance Transform (DT)
	2.7 Acceleration Structures
	2.7.1 Construction
	2.7.2 Traversal

	3 Position-Based Unified Particle Physics
	3.1 Solver
	3.1.1 Time Integration
	3.1.2 The System to be Solved
	3.1.3 Iterative Methods
	3.1.4 Relaxation
	3.1.5 Stabilization
	3.1.6 The Simulation Loop

	3.2 Constraint Types
	3.2.1 Distance Constraint
	3.2.2 Contact Constraints
	3.2.2.1 Environment Collisions
	3.2.2.2 Particle Collisions
	3.2.2.3 Friction

	3.2.3 Density Constraint

	4 Rigid Bodies
	4.1 Shape Matching
	4.1.1 Extraction of the Rotational Part
	4.1.1.1 Gram-Schmidt Orthogonalization
	4.1.1.2 Polar Decomposition
	4.1.1.3 Yet Another Method

	4.1.2 An Example

	4.2 Collision Handling
	4.2.1 Mass Scaling

	4.3 Solid Voxelization
	4.3.1 The Edge Function
	4.3.2 Overlap Test
	4.3.3 The Algorithm

	4.4 SDF Construction
	4.4.1 General Approach
	4.4.1.1 Two Dimensional Distance Transform
	4.4.1.2 Extension to Three Dimensions

	4.4.2 The Algorithm
	4.4.3 Voxel Merging

	5 Acceleration Structures
	5.1 Uniform Hash Grid
	5.1.1 Two Construction Methods
	5.1.2 k-Nearest Neighbors Search

	5.2 BVH Construction on the GPU
	5.2.1 Morton Code
	5.2.2 Binary Radix Trees
	5.2.3 Construction of Binary Radix Trees
	5.2.4 BVH Construction

	5.3 BVH Traversal on the GPU
	5.3.1 Traversal Using Stacks
	5.3.2 Stack-less Traversal
	5.3.3 Further Optimization

	6 Implementation and Results
	6.1 Rigid Bodies
	6.2 Collision Detection
	6.3 Simulations

	7 Conclusion
	7.1 Limitations
	7.2 Future Work

	Index
	Bibliography

